Linear regression analysis for comparing two measurers or methods of measurement: but which regression?

Clin Exp Pharmacol Physiol. 2010 Jul;37(7):692-9. doi: 10.1111/j.1440-1681.2010.05376.x. Epub 2010 Mar 12.


1. There are two reasons for wanting to compare measurers or methods of measurement. One is to calibrate one method or measurer against another; the other is to detect bias. Fixed bias is present when one method gives higher (or lower) values across the whole range of measurement. Proportional bias is present when one method gives values that diverge progressively from those of the other. 2. Linear regression analysis is a popular method for comparing methods of measurement, but the familiar ordinary least squares (OLS) method is rarely acceptable. The OLS method requires that the x values are fixed by the design of the study, whereas it is usual that both y and x values are free to vary and are subject to error. In this case, special regression techniques must be used. 3. Clinical chemists favour techniques such as major axis regression ('Deming's method'), the Passing-Bablok method or the bivariate least median squares method. Other disciplines, such as allometry, astronomy, biology, econometrics, fisheries research, genetics, geology, physics and sports science, have their own preferences. 4. Many Monte Carlo simulations have been performed to try to decide which technique is best, but the results are almost uninterpretable. 5. I suggest that pharmacologists and physiologists should use ordinary least products regression analysis (geometric mean regression, reduced major axis regression): it is versatile, can be used for calibration or to detect bias and can be executed by hand-held calculator or by using the loss function in popular, general-purpose, statistical software.

MeSH terms

  • Bias
  • Clinical Laboratory Techniques / statistics & numerical data*
  • Least-Squares Analysis
  • Linear Models
  • Monte Carlo Method
  • Pharmacological Phenomena*
  • Physiological Phenomena*