Intracranial cortical localization of the human K-complex

Clin Neurophysiol. 2010 Aug;121(8):1176-86. doi: 10.1016/j.clinph.2009.12.039. Epub 2010 Mar 24.


Objective: The K-complex was first identified in human sleep EEG more than 70years ago, but the localization of its intracranial generators is an unresolved issue. In this study, K-complexes recorded using simultaneous scalp and intracranial EEG were analyzed to discover the intracranial distribution of the human K-complex.

Methods: Stereoelectroencephalographic recordings were performed in six patients with medically-refractory epilepsy. Full 10-20 scalp montages were used and intracranial macroelectrodes sampled medial, lateral and basal frontal and temporal cortices, medial and lateral parietal and occipital cortices, as well as the hippocampus and thalamus. Spontaneous K-complexes were visually identified in stage II sleep and averaged off-line.

Results: The intracranial K-complex field was maximal over the anterior and superior aspects of the medial and lateral frontal lobe cortices, consistent with the frontal midline scalp EEG maximum. The frontal maximum surface-negative field was volume conducted as an inverted, positive field posteriorly and inferiorly, the polarity reversing laterally above the inferior temporal region and medially above the cingulate cortex.

Conclusions: As suggested by the scalp EEG topography, the intracranial distribution of the human K-complex is maximal over the anterior and superior frontal cortices. K-complex generation appears limited to cortical regions above the inferior temporal sulcus laterally, the cingulate sulcus medially and the parietooccipital junction posteriorly.

Significance: The human K-complex is produced by synchronous cortical activity that appears maximal intracranially over the superior medial and lateral aspects of the frontal lobes. The cingulate cortex and functionally related mesial temporal structures appear uninvolved in human K-complex generation.

MeSH terms

  • Adult
  • Brain Mapping
  • Cerebral Cortex / physiology*
  • Electrodes, Implanted
  • Electroencephalography
  • Epilepsy / physiopathology
  • Female
  • Humans
  • Male
  • Signal Processing, Computer-Assisted
  • Sleep / physiology*