Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair

Stem Cells Dev. 2010 Aug;19(8):1195-210. doi: 10.1089/scd.2009.0447.

Abstract

Mesenchymal stem cells (MSCs) are highly useful in a variety of cell therapies owing to their multipotential differentiation capability. MSCs derived from umbilical cord blood are generally isolated by their plastic adherence without using specific cell surface markers and examined for their osteogenic, adipogenic, and chondrogenic differentiation properties retrospectively. Here, we report 2 subpopulations of MSCs, separated based on aldehyde dehydrogenase (ALDH) activity. MSCs with a high ALDH activity (Alde-High) proliferated more than those with a low ALDH activity (Alde-Low). Alde-High MSCs had a greater ability to differentiate than Alde-Low MSCs in in vitro culture. Transplantation of Alde-High MSCs into fractured mouse femurs enabled early repair of tissues and rapid bone substitution. Alde-High MSCs were also more responsive to hypoxia than Alde-Low MSCs, with the upregulation of Flt-1, CXCR4, and Angiopoietin-2. Thus, MSCs with a high ALDH activity might serve as an effective therapeutic tool for healing fractures within a short period of time.

MeSH terms

  • Adipocytes / cytology
  • Adipocytes / metabolism
  • Aldehyde Dehydrogenase / metabolism
  • Alkaline Phosphatase / metabolism
  • Angiopoietins / genetics
  • Animals
  • Antigens, CD / metabolism
  • Apoptosis Regulatory Proteins
  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Cell Differentiation / physiology
  • Cell Hypoxia / physiology*
  • Cell Separation
  • Chondrocytes / cytology
  • Chondrocytes / metabolism
  • Collagen Type II / genetics
  • Femoral Fractures / pathology
  • Femoral Fractures / therapy
  • Fetal Blood / cytology
  • Fracture Healing / physiology*
  • Gene Expression / genetics
  • Glucose Transporter Type 1 / genetics
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Leukocyte Common Antigens / metabolism
  • Lipoproteins, LDL / metabolism
  • Mesenchymal Stem Cell Transplantation
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / enzymology
  • Mesenchymal Stem Cells / metabolism
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Nude
  • Neovascularization, Physiologic / physiology
  • Osteoblasts / cytology
  • Osteoblasts / metabolism
  • Osteogenesis / physiology
  • Receptors, CXCR4 / genetics
  • Repressor Proteins
  • Vascular Endothelial Growth Factor A / genetics

Substances

  • Angiopoietins
  • Antigens, CD
  • Apoptosis Regulatory Proteins
  • Basic Helix-Loop-Helix Transcription Factors
  • CXCR4 protein, human
  • Collagen Type II
  • Glucose Transporter Type 1
  • HIF1A protein, human
  • HIF3A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Lipoproteins, LDL
  • Receptors, CXCR4
  • Repressor Proteins
  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • acetyl-LDL
  • Aldehyde Dehydrogenase
  • Alkaline Phosphatase
  • Leukocyte Common Antigens
  • PTPRC protein, human