Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain

J Neurophysiol. 2010 Jun;103(6):3248-65. doi: 10.1152/jn.01131.2009. Epub 2010 Mar 31.

Abstract

Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the auditory midbrain increases neural discrimination of complex vocalizations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation / methods
  • Action Potentials / physiology
  • Animals
  • Auditory Pathways / physiology
  • Auditory Perception / physiology*
  • Computer Simulation
  • Discrimination, Psychological / physiology*
  • Evoked Potentials, Auditory, Brain Stem / physiology
  • Male
  • Mesencephalon / cytology*
  • Models, Neurological
  • Neurons / physiology*
  • Statistics as Topic
  • Vocalization, Animal / physiology*
  • Zebrafish