Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. Jan-Mar 2010;9(1):60-6.
doi: 10.14310/horm.2002.1254.

The Role of Iodine and Delta-Iodolactone in Growth and Apoptosis of Malignant Thyroid Epithelial Cells and Breast Cancer Cells

Free article
Comparative Study

The Role of Iodine and Delta-Iodolactone in Growth and Apoptosis of Malignant Thyroid Epithelial Cells and Breast Cancer Cells

Roland Gärtner et al. Hormones (Athens). .
Free article


Objective: As we previously demonstrated, the inhibitory effect of iodine on thyroid cell growth is mediated by iodolactones, especially 6-iodo-5-hydroxy-eicosatrienoic acid (delta-iodolactone). In this communication we compare the effect of iodide, molecular iodine and delta-iodolactone on growth inhibition and apoptosis on three human thyroid carcinoma cell lines (B-CPAP cells, FTC-133 cells and 8505C cells) as well as on human breast cancer cells (MCF 7).

Methods: Thyroid carcinoma cells were cultured in Dulbecco's modified Eagle's medium (DMEM) and MCF 7 cells in Rowswell Park Memorial Institute (RPMI) culture medium, both containing 10% (v/v) Fetal Calf Serum (FCS), until they were confluent. Around 2000 cells were then distributed in 12-well plates and grown for 48 h in either DMEM (thyroid cancer cells) or in RPMI medium (MCF 7 cells) both containing 5% FCS. Thereafter, different concentrations of iodide, iodine or delta-iodolactone were added for 24 h. Growth rate was estimated by cell counting in a Coulter Counter adapted for epithelial cells. Apoptosis was determined by a mitochondrial potential assay.

Results: The growth rate of B-CPAP cells was unaffected by iodide, but was reduced by high concentreations of molecular iodine (100 and 500 microM). However, delta-iodolactone significantly reduced cell proliferation already with low concentrations (5 microM and 10 microM) and further in a dose-dependent manner up to 82%. FTC-133 and 8505C cells were unaffected by iodide, iodine or delta-iodolactone. In contrast, in MCF 7 cells, molecular iodine (100 microM) inhibited growth from 100% to 83% but delta-iodolactone (1, 5 and 10 microM) dose-dependently decreased growth rate from 100% to 82% and 62%, respectively. The inhibition of growth was through apoptosis, and not necrosis, as the amount of apoptotic cells corresponded to the growth inhibition.

Conclusion: delta-Iotaodolactone seems to be the main iodocompound which can inhibit growth and induce apoptosis in B-CPAP cells as well as in MCF 7 breast cancer cells.

Similar articles

See all similar articles

Cited by 5 articles

Publication types

MeSH terms