DNA methylation in adult stem cells: new insights into self-renewal

Epigenetics. 2010 Apr;5(3):189-93. doi: 10.4161/epi.5.3.11374. Epub 2010 Apr 1.

Abstract

Methylation of cytosine residues in the context of CpG dinucleotides within mammalian DNA is an epigenetic modification with profound effects on transcriptional regulation. A group of enzymes, the DNA methyltransferases (DNMTs) tightly regulate both the initiation and maintenance of these methyl marks. Loss of critical components of this enzymatic machinery results in growth, viability, and differentiation defects in both mice and humans, supporting the notion that this epigenetic modification is essential for proper development. Beyond this, DNA methylation also provides a potent epigenetic mechanism for cellular memory needed to silence repetitive elements and preserve lineage specificity over repeated cell divisions throughout adulthood. Recent work highlighting the specialized roles of DNA methylation and methyltransferases in maintaining adult somatic stem cell function suggests that further dissection of these mechanisms will shed new light on the complex nature of self-renewal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult Stem Cells / cytology
  • Adult Stem Cells / metabolism*
  • Animals
  • DNA Methylation / genetics*
  • DNA Modification Methylases / metabolism
  • Humans
  • Mice

Substances

  • DNA Modification Methylases