C-reactive protein induced rearrangement of phosphatidylcholine on nanoparticle mimics of lipoprotein particles

J Phys Chem B. 2010 Apr 29;114(16):5556-62. doi: 10.1021/jp911617q.

Abstract

Lipid-coated metal nanoparticles are developed here as a mimic of low-density lipoprotein (LDL) particles and used to study C-reactive protein (CRP) binding to highly curved lipid membranes. A 12 nm shift in the localized surface plasmon resonance (LSPR) was observed when CRP was added to the lipid-coated gold nanoparticles. Transmission electron microscopy (TEM) revealed that CRP induced a structural change to the lipids, resulting in clusters of nanoparticles. This clustering provides a visualization of how CRP could cause the aggregation of LDL particles, which is a key step in atherosclerosis. The cluster formation and resultant LSPR shift requires the presence of both CRP and calcium. Fluorescence anisotropy, using a CRP-specific, fluorophore-labeled aptamer confirmed that CRP was bound to the lipid-coated nanoparticles. An increase in the fluorescence anisotropy (Delta r = +0.261 +/- 0.004) of the aptamer probe occurs in the presence of CRP, PC-coated nanoparticles, and calcium. Subsequent sequestration of calcium by EDTA leads to a decrease in the anisotropy (Delta r = -0.233 +/- 0.011); however, there is no change in the LSPR and no change to the cluster structure observed by TEM. This indicates that CRP binds to the PC membrane on the nanoparticle surface reversibly through a calcium bridging mechanism while changing the underlying membrane structure irreversibly as a result of binding.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aptamers, Nucleotide / genetics
  • Aptamers, Nucleotide / metabolism
  • Base Sequence
  • Biomimetic Materials / chemistry*
  • Biomimetic Materials / metabolism*
  • C-Reactive Protein / metabolism*
  • Calcium / metabolism
  • Edetic Acid / metabolism
  • Fluorescence Polarization
  • Humans
  • Lipoproteins / chemistry*
  • Metal Nanoparticles / chemistry
  • Microscopy, Electron, Transmission
  • Nanoparticles / chemistry*
  • Phosphatidylcholines / metabolism*
  • Surface Plasmon Resonance

Substances

  • Aptamers, Nucleotide
  • Lipoproteins
  • Phosphatidylcholines
  • C-Reactive Protein
  • Edetic Acid
  • Calcium