Influence of ultrasound induced cavitation on magnetic resonance imaging contrast in the rat liver in the presence of macromolecular contrast agent

Invest Radiol. 2010 May;45(5):282-7. doi: 10.1097/RLI.0b013e3181dac2a7.

Abstract

Objectives: Local drug delivery by ultrasound (US)-induced cavitation is a promising strategy for increasing the drug concentration at the target location and for decreasing the systemic toxicity effects. The presence of microbubbles during sonication at the targeted location improves the likelihood for cavitation that can be exploited to increase the capillary permeability. The objective of this work was to evaluate the magnetic resonance imaging (MRI) contrast changes in hepatic tissue in vivo, induced by US-triggered cavitation and destruction of microbubbles (Sonovue), in the presence of a coinjected blood pool MRI contrast agent (Vistarem) used as a reporter macromolecule. The potential tissue damage induced by microbubbles destruction was also evaluated by histology.

Method: The change in the hepatic distribution of the macromolecular MRI contrast agent associated with cavitation was monitored at 1.5 T with a look-locker fast inversion recovery sequence to map the longitudinal relaxation rates, before and during 1 hour after intravenous administration of Vistarem and Sonovue. In 1 group of rats (n = 5), these microbubbles were immediately destroyed with a clinical echograph, using a high mechanical index (MI = 1.5) at low frequency (2 MHz). The control group (n = 7) received identical injections without application of US. The parametric relaxation rate images were computed, and the changes in time were analyzed to account for the potential effect of microbubble destruction by US on the permeability of the hepatic vessels. The animals were killed 1 day after the experiment for routine histology of the liver.

Results: For both groups of animals, after an initial increase, a transient decay of the longitudinal relaxation rate was observed, followed by a constant plateau after 20 minutes. The analysis of the mean relaxation rates in the liver showed significant (P < 0.01) higher values for the group with destruction of microbubbles as compared with the control group. The US-triggered cavitation and destruction of microbubble with the proposed protocol suggests an increased concentration of Vistarem of a factor 2 in the hepatic tissue. No tissue damage was observed at the microscopic analysis.

Conclusion: The absence of tissue alterations indicates that the destruction of this US contrast agent could be safe in vivo under an appropriate choice of the sonication parameters. This approach opens new perspectives for translation toward clinical applications of local drug delivery. Ultrasound-mediated microbubble destruction may help in increasing the local concentration of a drug currently limited by the endothelial barrier. In addition, it may help in reducing the systemic toxicity to normal cells in standard chemotherapies, because the enhanced capillary permeability effect can be spatially adjusted by selecting the sonicated region.

MeSH terms

  • Animals
  • Contrast Media*
  • Heterocyclic Compounds
  • Liver / physiology*
  • Magnetic Resonance Imaging*
  • Microbubbles
  • Organometallic Compounds
  • Phospholipids
  • Rats
  • Sulfur Hexafluoride
  • Ultrasonics*

Substances

  • Contrast Media
  • Heterocyclic Compounds
  • Organometallic Compounds
  • Phospholipids
  • contrast agent BR1
  • contrast agent P792
  • Sulfur Hexafluoride