The de novo initiating RNA-directed RNA polymerase (RdRP), P2, forms the central machinery in the infection cycle of the bacteriophage phi6 by performing the dual tasks of replication and transcription of the double-stranded RNA genome in the host cell. By measurement and quantitative analysis of multiple-quantum spin-relaxation data for the delta1 positions of Ile residues that are distributed over the 3D-fold of P2, we find that the enzyme is dynamic both on the fast (ps-ns) and slow (micros-ms) timescales. The characteristics of several motional modes including those that coincide with the catalytic timescale (500-800/s) are altered in the presence of substrate analogs and single-stranded RNA templates. These studies reveal the plasticity of this finely tuned molecular machine and represent a first step towards linking structural information available from a host of crystal structures to catalytic mechanisms and timescales obtained from the measurements of kinetics for homologous systems in solution.