Genomewide screening for novel genetic variations associated with ciprofloxacin resistance in Bacillus anthracis
- PMID: 20385868
- PMCID: PMC2897295
- DOI: 10.1128/AAC.01405-09
Genomewide screening for novel genetic variations associated with ciprofloxacin resistance in Bacillus anthracis
Abstract
Fluoroquinolone (FQ) resistance of Bacillus anthracis is a serious concern in the fields of biodefense and bioterrorism since FQs are very effective antibiotics and are recommended as first-line treatment against this lethal bacterium. In this study, we obtained 2 strains of B. anthracis showing resistance or intermediate resistance to ciprofloxacin (CIP) by a stepwise selection procedure with increasing CIP concentrations. Fifteen genetic variations were identified between the parental and CIP-resistant strains by next-generation sequencing. Nonsynonymous mutations in the quinolone resistance-determining region (QRDR) of type II DNA topoisomerase were identified in the resistant strain but not in the intermediate-resistant strain. The GBAA0834 (TetR-type transcriptional regulator) locus was also revealed to be a novel "mutation hot spot" that leads to the increased expression of multidrug efflux systems for CIP resistance. As an initial step of CIP resistance in B. anthracis, such disruptive mutations of GBAA0834 appear to be more easily acquired than those in an essential gene, such as that encoding type II DNA topoisomerase. Such an intermediate-resistant phenotype could increase a cell population under CIP-selective pressure and might promote the emergence of highly resistant isolates. Our findings reveal, in addition to QRDR, crucial genetic targets for the investigation of intermediate resistance of B. anthracis to FQs.
Figures
Similar articles
-
Activities of different fluoroquinolones against Bacillus anthracis mutants selected in vitro and harboring topoisomerase mutations.Antimicrob Agents Chemother. 2004 Aug;48(8):3024-7. doi: 10.1128/AAC.48.8.3024-3027.2004. Antimicrob Agents Chemother. 2004. PMID: 15273116 Free PMC article.
-
In vitro selection and characterization of Bacillus anthracis mutants with high-level resistance to ciprofloxacin.Antimicrob Agents Chemother. 2003 Jul;47(7):2362-5. doi: 10.1128/AAC.47.7.2362-2365.2003. Antimicrob Agents Chemother. 2003. PMID: 12821500 Free PMC article.
-
Identification of ciprofloxacin resistance by SimpleProbe, High Resolution Melt and Pyrosequencing nucleic acid analysis in biothreat agents: Bacillus anthracis, Yersinia pestis and Francisella tularensis.Mol Cell Probes. 2010 Jun;24(3):154-60. doi: 10.1016/j.mcp.2010.01.003. Epub 2010 Jan 25. Mol Cell Probes. 2010. PMID: 20100564
-
Identification and expression analyses of new genes associated with ciprofloxacin resistance in Vibrio parahaemolyticus.Food Res Int. 2019 Nov;125:108629. doi: 10.1016/j.foodres.2019.108629. Epub 2019 Aug 22. Food Res Int. 2019. PMID: 31554132
-
Type II topoisomerase mutations in Bacillus anthracis associated with high-level fluoroquinolone resistance.J Antimicrob Chemother. 2004 Jul;54(1):90-4. doi: 10.1093/jac/dkh294. Epub 2004 Jun 9. J Antimicrob Chemother. 2004. PMID: 15190035
Cited by
-
Ciprofloxacin enhances the biofilm formation of Staphylococcus aureus via an agrC-dependent mechanism.Front Microbiol. 2023 Dec 21;14:1328947. doi: 10.3389/fmicb.2023.1328947. eCollection 2023. Front Microbiol. 2023. PMID: 38179460 Free PMC article.
-
Cytoplasmic Accumulation and Permeability of Antibiotics in Gram Positive and Gram Negative Bacteria Visualized in Real-Time via a Fluorogenic Tagging Strategy.ACS Chem Biol. 2024 Jan 19;19(1):3-8. doi: 10.1021/acschembio.3c00510. Epub 2023 Dec 14. ACS Chem Biol. 2024. PMID: 38096425
-
The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic.Front Public Health. 2022 Dec 21;10:1025633. doi: 10.3389/fpubh.2022.1025633. eCollection 2022. Front Public Health. 2022. PMID: 36620240 Free PMC article. Review.
-
Systematic Review of In Vitro Antimicrobial Susceptibility Testing for Bacillus anthracis, 1947-2019.Clin Infect Dis. 2022 Oct 17;75(Suppl 3):S373-S378. doi: 10.1093/cid/ciac520. Clin Infect Dis. 2022. PMID: 36251548 Free PMC article.
-
Artificial Selection for Pathogenicity Mutations in Staphylococcus aureus Identifies Novel Factors Relevant to Chronic Infection.Infect Immun. 2019 Mar 25;87(4):e00884-18. doi: 10.1128/IAI.00884-18. Print 2019 Apr. Infect Immun. 2019. PMID: 30642903 Free PMC article.
References
-
- Bao, H., H. Guo, J. Wang, R. Zhou, X. Lu, and S. Shi. 2009. MapView: visualization of short reads alignment on a desktop computer. Bioinformatics 25:1554-1555. - PubMed
-
- Bast, D. J., A. Athamna, C. L. Duncan, J. C. de Azavedo, D. E. Low, G. Rahav, D. Farrell, and E. Rubinstein. 2004. Type II topoisomerase mutations in Bacillus anthracis associated with high-level fluoroquinolone resistance. J. Antimicrob. Chemother. 54:90-94. - PubMed
-
- Bentley, D. R., S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown, K. P. Hall, D. J. Evers, C. L. Barnes, H. R. Bignell, J. M. Boutell, J. Bryant, R. J. Carter, R. Keira Cheetham, A. J. Cox, D. J. Ellis, M. R. Flatbush, N. A. Gormley, S. J. Humphray, L. J. Irving, M. S. Karbelashvili, S. M. Kirk, H. Li, X. Liu, K. S. Maisinger, L. J. Murray, B. Obradovic, T. Ost, M. L. Parkinson, M. R. Pratt, I. M. Rasolonjatovo, M. T. Reed, R. Rigatti, C. Rodighiero, M. T. Ross, A. Sabot, S. V. Sankar, A. Scally, G. P. Schroth, M. E. Smith, V. P. Smith, A. Spiridou, P. E. Torrance, S. S. Tzonev, E. H. Vermaas, K. Walter, X. Wu, L. Zhang, M. D. Alam, C. Anastasi, I. C. Aniebo, D. M. Bailey, I. R. Bancarz, S. Banerjee, S. G. Barbour, P. A. Baybayan, V. A. Benoit, K. F. Benson, C. Bevis, P. J. Black, A. Boodhun, J. S. Brennan, J. A. Bridgham, R. C. Brown, A. A. Brown, D. H. Buermann, A. A. Bundu, J. C. Burrows, N. P. Carter, N. Castillo, E. C. M. Chiara, S. Chang, R. Neil Cooley, N. R. Crake, O. O. Dada, K. D. Diakoumakos, B. Dominguez-Fernandez, D. J. Earnshaw, U. C. Egbujor, D. W. Elmore, S. S. Etchin, M. R. Ewan, M. Fedurco, L. J. Fraser, K. V. Fuentes Fajardo, W. Scott Furey, D. George, K. J. Gietzen, C. P. Goddard, G. S. Golda, P. A. Granieri, D. E. Green, D. L. Gustafson, N. F. Hansen, K. Harnish, C. D. Haudenschild, N. I. Heyer, M. M. Hims, J. T. Ho, A. M. Horgan, et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53-59. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
