Role of skeletal muscles impairment and brain oxygenation in limiting oxidative metabolism during exercise after bed rest

J Appl Physiol (1985). 2010 Jul;109(1):101-11. doi: 10.1152/japplphysiol.00782.2009. Epub 2010 Apr 15.

Abstract

"Central" and "peripheral" limitations to oxidative metabolism during exercise were evaluated in 10 young males following a 35-day horizontal bed rest (BR). Incremental exercise (IE) and moderate- and heavy-intensity constant-load exercises (CLE) were carried out on a cycloergometer before and 1-2 days after BR. Pulmonary gas exchange, cardiac output (Q; by impedance cardiography), skeletal muscle (vastus lateralis), and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined. After BR, "peak" (values at exhaustion during IE) workload, peak O(2) uptake (Vo(2 peak)), peak stroke volume, Q(peak), and peak skeletal muscle O(2) extraction were decreased (-18, -18, -22, -19, and -33%, respectively). The gas exchange threshold was approximately 60% of Vo(2 peak) both before and after BR. At the highest workloads, brain oxygenation data suggest an increased O(2) extraction, which was unaffected by BR. Vo(2) kinetics during CLE (same percentage of peak workload before and after BR) were slower (time constant of the "fundamental" component: 31.1 +/- 2.0 s before vs. 40.0 +/- 2.2 s after BR); the amplitude of the "slow component" was unaffected by BR, thus it would be greater, after BR, at the same absolute workload. A more pronounced "overshoot" of skeletal muscle O(2) extraction during CLE was observed after BR, suggesting an impaired adjustment of skeletal muscle O(2) delivery. The role of skeletal muscles in the impairment of oxidative metabolism during submaximal and maximal exercise after BR was identified. The reduced capacity of peak cardiovascular O(2) delivery did not determine a "competition" for the available O(2) between skeletal muscles and brain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Bed Rest*
  • Brain / blood supply*
  • Cardiac Output / physiology
  • Energy Metabolism / physiology
  • Exercise*
  • Heart Rate / physiology
  • Humans
  • Male
  • Muscle, Skeletal / metabolism*
  • Oxygen / blood
  • Oxygen / metabolism*
  • Oxygen Consumption*
  • Pulmonary Gas Exchange / physiology
  • Young Adult

Substances

  • Oxygen