Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics

Nat Mater. 2010 Jun;9(6):511-7. doi: 10.1038/nmat2745. Epub 2010 Apr 18.

Abstract

Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Capillary Action
  • Cats
  • Electrodes
  • Electronics / instrumentation
  • Electronics / methods*
  • Fibroins*
  • Microscopy, Confocal / methods
  • Models, Animal
  • Polymethyl Methacrylate
  • Prostheses and Implants
  • Silk*
  • Solubility
  • Stress, Mechanical
  • Surgical Instruments

Substances

  • Silk
  • Fibroins
  • Polymethyl Methacrylate