Rational design of a macrocyclic-based chemosensor for anions

Tetrahedron Lett. 2010 Mar 3;51(9):1329-1332. doi: 10.1016/j.tetlet.2010.01.004.

Abstract

A macrocyclic-based fluorescence chemosensor has been designed and synthesized from the reaction of dansyl chloride and a hexaaminomacrocycle containing four secondary and two tertiary amines. The new chemosensor has been examined for its binding ability toward phosphate, sulfate, nitrate, iodide, bromide, chloride, and fluoride by fluorescence spectroscopy in DMSO. The results indicate that the compound binds each of the anions with a 1:1 stoichiometry, showing high affinity for the oxoanions, chloride and iodide with the binding constants up to four orders of magnitude. Ab initio calculations based on density functional theory (DFT) suggest that the ligand is deformed in order to encapsulate an anion, and each anion, except fluoride, is bonded to the macrocycle through two NH…X(-) and four CH…X(-) interactions.