Enhancement of device performance of organic solar cells by an interfacial perylene derivative layer

ACS Appl Mater Interfaces. 2010 May;2(5):1390-4. doi: 10.1021/am100039m.

Abstract

We report that device performance of organic solar cells consisting of zinc phthalocyanine and fullerene (C(60)) can be enhanced by insertion of a perylene derivative interfacial layer between fullerene and bathocuproine (BCP) exciton blocking layer (EBL). The morphology of the BCP is influenced by the underlying N,N'-dihexyl-perylene-3,4,9,10-bis(dicarboximide) (PTCDI-C6), which promotes migration of the cathode metal into the BCP layer. Insertion of a PTCDI-C6 layer between fullerene and BCP layers enhances the power conversion efficiency to 2.5%, an improvement of 32% over devices without PTCDI-C6 layer. The enhancement in device performance by insertion of PTCDI-C6 is attributed to a reduction in series resistance due to promoted metal migration into BCP and optimized optical interference effects in multilayered devices.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electric Power Supplies*
  • Equipment Design
  • Equipment Failure Analysis
  • Materials Testing
  • Organic Chemicals / chemistry*
  • Perylene / chemistry*
  • Solar Energy*
  • Surface Properties

Substances

  • Organic Chemicals
  • Perylene