Aims: Tumours secrete proangiogenic factors to induce the ingrowth of blood vessels, the end targets of which are vascular endothelial cells (ECs). The MEOX2 homeoprotein inhibits nuclear factor-kappaB (NF-kappaB) signalling and EC activation in response to serum and proangiogenic factors. We hypothesize that MEOX2 interacts with components of this pathway in vascular ECs to modulate NF-kappaB activity and EC activation and that these interactions depend upon specific domains within the MEOX2 protein.
Methods and results: To test our hypothesis, we transduced ECs with MEOX2 expression constructs. MEOX2 protein localized to the nuclear fraction, as did IkappaBbeta and p65. By co-immunoprecipitation, MEOX2 bound to both p65 and IkappaBbeta. Immunofluorescence demonstrated that MEOX2 colocalizes in the nucleus with both p65 and IkappaBbeta and that this colocalization requires the MEOX2 homeodomain and N-terminal domain. Finally, promoter assays revealed that MEOX2 expression has a biphasic effect on NF-kappaB-dependent promoters. At low levels, MEOX2 stimulates NF-kappaB activity, whereas at high levels, it represses, effects that also depend upon the homeodomain and the N-terminal domain.
Conclusion: Our results represent the first report of an interaction between a homeobox protein and IkappaBbeta and suggest that MEOX2 modulates the activity of the RelA complex through direct interaction with its components. These observations implicate MEOX2 as a potentially important regulatory gene inhibiting not only the angiogenic response of ECs to proangiogenic factors, but also their response to chronic inflammatory stimulation that normally activates NF-kappaB, suggesting MEOX2 as a possible molecular target for the therapy of angiogenesis-dependent diseases such as cancer.