Energetics of swimming: a historical perspective

Eur J Appl Physiol. 2011 Mar;111(3):367-78. doi: 10.1007/s00421-010-1433-7. Epub 2010 Apr 27.

Abstract

The energy cost to swim a unit distance (C(sw)) is given by the ratio E/v where E is the net metabolic power and v is the swimming speed. The contribution of the aerobic and anaerobic energy sources to E in swimming competitions is independent of swimming style, gender or skill and depends essentially upon the duration of the exercise. C(sw) is essentially determined by the hydrodynamic resistance (W(d)): the higher W(d) the higher C(sw); and by the propelling efficiency (η(P)): the higher η(P) the lower C(sw). Hence, all factors influencing W(d) and/or η(P) result in proportional changes in C(sw). Maximal metabolic power E max and C(sw) are the main determinants of swimming performance; an improvement in a subject's best performance time can more easily be obtained by a reduction of C sw) rather than by an (equal) increase in E max (in either of its components, aerobic or anaerobic). These sentences, which constitute a significant contribution to today's knowledge about swimming energetics, are based on the studies that Professor Pietro Enrico di Prampero and his co-workers carried out since the 1970s. This paper is devoted to examine how this body of work helped to improve our understanding of this fascinating mode of locomotion.

Publication types

  • Historical Article
  • Review

MeSH terms

  • Biomechanical Phenomena / physiology
  • Energy Metabolism / physiology*
  • Exercise Test / history
  • History, 20th Century
  • Humans
  • Hydrodynamics
  • Models, Biological
  • Models, Theoretical
  • Swimming / physiology*
  • Torque