Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling

Ann Occup Hyg. 2010 Jul;54(5):514-31. doi: 10.1093/annhyg/meq015. Epub 2010 May 6.

Abstract

Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO(2) were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 x 10(6) cm(-3), were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m(-3), were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations were described for processes as required.

Publication types

  • Evaluation Study

MeSH terms

  • Aerosols / analysis*
  • Aerosols / chemistry
  • Air Pollutants, Occupational / analysis*
  • Air Pollutants, Occupational / chemistry
  • Carbon / analysis*
  • Carbon / chemistry
  • Carbon Dioxide / analysis
  • Carbon Monoxide / analysis
  • Environmental Monitoring / instrumentation
  • Environmental Monitoring / methods*
  • Humans
  • Inhalation Exposure / analysis
  • Inhalation Exposure / prevention & control
  • Inhalation Exposure / statistics & numerical data
  • Nanofibers / analysis*
  • Nanofibers / chemistry
  • Nanofibers / standards
  • Nanotechnology / methods
  • Occupational Exposure / analysis
  • Occupational Exposure / prevention & control
  • Occupational Exposure / statistics & numerical data
  • Particle Size
  • Particulate Matter / analysis
  • Particulate Matter / chemistry
  • Time Factors
  • Workplace / standards

Substances

  • Aerosols
  • Air Pollutants, Occupational
  • Particulate Matter
  • Carbon Dioxide
  • Carbon
  • Carbon Monoxide