Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in Drosophila macrophages in vivo

J Cell Biol. 2010 May 17;189(4):681-9. doi: 10.1083/jcb.200912134. Epub 2010 May 10.


Drosophila melanogaster macrophages are highly migratory cells that lend themselves beautifully to high resolution in vivo imaging experiments. By expressing fluorescent probes to reveal actin and microtubules, we can observe the dynamic interplay of these two cytoskeletal networks as macrophages migrate and interact with one another within a living organism. We show that before an episode of persistent motility, whether responding to developmental guidance or wound cues, macrophages assemble a polarized array of microtubules that bundle into a compass-like arm that appears to anticipate the direction of migration. Whenever cells collide with one another, their microtubule arms transiently align just before cell-cell repulsion, and we show that forcing depolymerization of microtubules by expression of Spastin leads to their defective polarity and failure to contact inhibit from one another. The same is true in orbit/clasp mutants, indicating a pivotal role for this microtubule-binding protein in the assembly and/or functioning of the microtubule arm during polarized migration and contact repulsion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Actin Cytoskeleton / ultrastructure*
  • Adenosine Triphosphatases / genetics
  • Animals
  • Drosophila Proteins / genetics
  • Drosophila Proteins / physiology*
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / metabolism
  • Drosophila melanogaster / ultrastructure*
  • Microtubule-Associated Proteins / genetics
  • Microtubule-Associated Proteins / metabolism
  • Microtubule-Associated Proteins / physiology*
  • Microtubules / metabolism
  • Microtubules / physiology
  • Microtubules / ultrastructure*


  • Drosophila Proteins
  • Microtubule-Associated Proteins
  • chb protein, Drosophila
  • Adenosine Triphosphatases
  • spas protein, Drosophila