Achromatizing the human eye: the problem of chromatic parallax

J Opt Soc Am A. 1991 Apr;8(4):686-91. doi: 10.1364/josaa.8.000686.

Abstract

Attempts to correct the chromatic difference of focus of the human eye will introduce unwanted chromatic parallax if the eye is misaligned with the optical axis of the achromatizing system. Using geometrical optics, we show that the amount of parallax is approximately proportional to the amount of misalignment of the eye, with the constant of proportionality equal to the eye's chromatic difference of refractive error. This prediction was confirmed by the experimental determination of chromatic parallax for two commercially available achromatizing lenses. On the basis of these results, we calculated that anticipated improvements in the polychromatic modulation transfer function of the eye offered by achromatizing lenses will be canceled by approximately 0.4 mm of the misalignment between the lens and the eye. Our prediction that further misalignment would severely reduce image quality of the achromatized eye was verified by psychophysical measurements of contrast sensitivity.

MeSH terms

  • Color Perception / physiology*
  • Contrast Sensitivity / physiology
  • Humans
  • Mathematics
  • Models, Biological
  • Psychophysics
  • Vision Disparity / physiology*
  • Vision, Ocular / physiology