Serotonin in the leech central nervous system: anatomical correlates and behavioral effects

J Comp Physiol A. 1991 Feb;168(2):191-200. doi: 10.1007/BF00218411.


1. Serotonin is sequestered by a limited population of identified neurons in the 32 ganglia of the leech nervous system. A major fraction of the serotonin in each ganglion is contained in the paired Retzius cells, colossal effector neurons whose size varies longitudinally. The 5 other classes of identified serotonin-containing neurons, one effector cell and 4 interneurons, are approximately twice as numerous in anterior as in posterior ganglia. 2. We dissected 6 longitudinal samples from the ventral nerve cords of hungry Hirudo medicinalis, and measured their serotonin content using high pressure liquid chromatography with electrochemical detection. A consistent neurochemical pattern emerged in which segmental ganglia 2-4 had the highest quantity of serotonin: 18.51 pmol per ganglion. The anterior cerebral ganglion contained 14.78 pmol, and the content of the 4 posterior samples, segmental ganglia 7-10, 12-15, 17-20 and the caudal ganglion, decreased continuously from 16.35, 15.08, 10.75 to 2.51 pmol per ganglion, respectively. Morphometric analyses indicated that this pattern of ganglionic serotonin correlated primarily with longitudinal variations in the number of serotonin neurons per ganglion and secondarily with volume of the Retzius cells. Retzius cell volume correlated highly with the mass of their innervated body segments both of which are largest in mid-body domains. 3. Serotonin expresses leech feeding, and its ganglionic levels are a potentially useful index of behavioral state. We measured serotonin in the ganglionic samples from hungry and satiated leeches. The samples from recently fed animals contained 28% less serotonin than those from hungry ones. The amounts of serotonin in the cerebral and all the segmental samples from satiated leeches were significantly lower than equivalent samples of hungry animals. A similar pattern of depletion was seen in leeches which fed for a prolonged period (90 to 120 min) rather than the normal period of 30 min. 4. The effects of ingestion on serotonin-containing neurons was examined with the glyoxylic acid-induced histochemical fluorescence. The levels of fluorescence in all serotonin neurons in fed leeches were consistently lower than those in equivalent neurons in hungry animals, corroborating the ganglionic decrease in serotonin in satiated leeches. 5. To examine effects of body wall distension on serotonin levels, hungry leeches were fed to satiation, and half of them were relaxed by removing their distending blood meals. After 6 weeks, ganglionic serotonin in leeches with relaxed bodies was 21% higher than in those with distended bodies. 6. Ingestive behavior depletes serotonin from leech neurons and body wall distension appears to interfere with its synthesis.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Behavior, Animal / physiology*
  • Central Nervous System / anatomy & histology
  • Central Nervous System / chemistry
  • Central Nervous System / physiology*
  • Chromatography, High Pressure Liquid
  • Electrochemistry
  • Feeding Behavior / physiology
  • Ganglia / cytology
  • Ganglia / metabolism
  • Histocytochemistry
  • Hunger / physiology
  • Leeches / physiology*
  • Microscopy, Fluorescence
  • Serotonin / metabolism
  • Serotonin / physiology*


  • Serotonin