A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis

J Biol Chem. 2010 Jul 23;285(30):23371-86. doi: 10.1074/jbc.M109.096644. Epub 2010 May 12.

Abstract

A multistep two-component signaling system is established as a key element of cytokinin signaling in Arabidopsis. Here, we provide evidence for a function of the two-component signaling system in cold stress response in Arabidopsis. Cold significantly induced the expression of a subset of A-type ARR genes and of GUS in Pro(ARR7):GUS transgenic Arabidopsis. AHK2 and AHK3 were found to be primarily involved in mediating cold to express A-type ARRs despite cytokinin deficiency. Cold neither significantly induced AHK2 and AHK3 expression nor altered the cytokinin contents of wild type within the 4 h during which the A-type ARR genes exhibited peak expression in response to cold, indicating that cold might induce ARR expression via the AHK2 and AHK3 proteins without alterations in cytokinin levels. The ahk2 ahk3 and ahk3 ahk4 mutants exhibited enhanced freezing tolerance compared with wild type. These ahk double mutants acclimated as efficiently to cold as did wild type. The overexpression of the cold-inducible ARR7 in Arabidopsis resulted in a hypersensitivity response to freezing temperatures under cold-acclimated conditions. The expression of C-repeat/dehydration-responsive element target genes was not affected by ARR7 overexpression as well as in ahk double mutants. By contrast, the arr7 mutants showed increased freezing tolerance. The ahk2 ahk3 and arr7 mutants showed hypersensitive response to abscisic acid (ABA) for germination, whereas ARR7 overexpression lines exhibited insensitive response to ABA. These results suggest that AHK2 and AHK3 and the cold-inducible A-type ARRs play a negative regulatory role in cold stress signaling via inhibition of ABA response, occurring independently of the cold acclimation pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / cytology*
  • Arabidopsis / drug effects
  • Arabidopsis / genetics
  • Arabidopsis / physiology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Cold Temperature*
  • Cytokinins / metabolism*
  • Cytokinins / pharmacology
  • Dexamethasone / pharmacology
  • Freezing
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant / drug effects
  • Mutation
  • Plants, Genetically Modified
  • Signal Transduction* / drug effects
  • Signal Transduction* / genetics
  • Stress, Physiological* / drug effects
  • Stress, Physiological* / genetics

Substances

  • Arabidopsis Proteins
  • Cytokinins
  • Dexamethasone