Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul 9;400(2):231-43.
doi: 10.1016/j.jmb.2010.05.016. Epub 2010 May 13.

Spatial Structure of the Transmembrane Domain Heterodimer of ErbB1 and ErbB2 Receptor Tyrosine Kinases

Affiliations

Spatial Structure of the Transmembrane Domain Heterodimer of ErbB1 and ErbB2 Receptor Tyrosine Kinases

Konstantin S Mineev et al. J Mol Biol. .

Abstract

Growth factor receptor tyrosine kinases of the ErbB family play a significant role in vital cellular processes and various cancers. During signal transduction across plasma membrane, ErbB receptors are involved in lateral homodimerization and heterodimerization with proper assembly of their extracellular single-span transmembrane (TM) and cytoplasmic domains. The ErbB1/ErbB2 heterodimer appears to be the strongest and most potent inducer of cellular transformation and mitogenic signaling compared to other ErbB homodimers and heterodimers. Spatial structure of the heterodimeric complex formed by TM domains of ErbB1 and ErbB2 receptors embedded into lipid bicelles was obtained by solution NMR. The ErbB1 and ErbB2 TM domains associate in a right-handed alpha-helical bundle through their N-terminal double GG4-like motif T(648)G(649)X(2)G(652)A(653) and glycine zipper motif T(652)X(3)S(656)X(3)G(660), respectively. The described heterodimer conformation is believed to support the juxtamembrane and kinase domain configuration corresponding to the receptor active state. The capability for multiple polar interactions, along with hydrogen bonding between TM segments, correlates with the observed highest affinity of the ErbB1/ErbB2 heterodimer, implying an important contribution of the TM helix-helix interaction to signal transduction.

Similar articles

See all similar articles

Cited by 40 articles

See all "Cited by" articles

Publication types

Associated data

LinkOut - more resources

Feedback