Celastrol acts as a potent antimetastatic agent targeting beta1 integrin and inhibiting cell-extracellular matrix adhesion, in part via the p38 mitogen-activated protein kinase pathway

J Pharmacol Exp Ther. 2010 Aug;334(2):489-99. doi: 10.1124/jpet.110.165654. Epub 2010 May 14.


Malignant tumors remain a significant health threat, with death often occurring as a result of metastasis. Cell adhesion is a crucial step in the metastatic cascade of tumor cells, and interruption of this step is considered to be a logical strategy for prevention and treatment of tumor metastasis. Celastrol [3-hydroxy-24-nor-2-oxo-1(10),3,5,7-friedelatetraen-29-oic acid], a quinone methide triterpene from the medicinal plant Tripterygium wilfordii, possesses antitumor activities, whereas the underlying mechanism(s) remains elusive. Here, we found that celastrol inhibited cell-extracellular matrix (ECM) adhesion of human lung cancer 95-D and mouse melanoma B16F10 cells. This inhibition was achieved through suppressing beta1 integrin ligand affinity and focal adhesion formation, accompanied by the reduced phosphorylation of focal adhesion kinase (FAK). In understanding the underlying mechanisms, we found that celastrol activated p38 mitogen-activated protein kinase (MAPK) by phosphorylation before the decrement of phosphorylated FAK and that this action was independent of the presence of fibronectin. Using 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), a specific inhibitor of p38 MAPK, the effects of celastrol on beta1 integrin function, cell-ECM adhesion, and phosphorylation of FAK were partially attenuated. In addition, focal adhesion-dependent cell migration and invasion were both inhibited by treatment with celastrol. Finally, the antimetastatic activity of celastrol was examined in vivo using the B16F10-green fluorescent protein-injected C57BL/6 mouse model, as indicated by decreased pulmonary metastases in celastrol-administrated mice. Taken together, these data demonstrate for the first time that celastrol exerts potent antimetastatic activity both in vitro and in vivo, and they provide new evidence for the critical roles of p38 MAPK in the regulation of integrin function and cell adhesion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Cell Adhesion / drug effects
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Enzyme Activation
  • Extracellular Matrix / physiology*
  • Fibronectins / physiology
  • Humans
  • Integrin beta1 / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Neoplasm Invasiveness
  • Neoplasm Metastasis / drug therapy*
  • Neoplasm Metastasis / pathology
  • Proto-Oncogene Proteins c-akt / physiology
  • Signal Transduction
  • p38 Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • p38 Mitogen-Activated Protein Kinases / physiology*


  • Antineoplastic Agents, Phytogenic
  • Fibronectins
  • Integrin beta1
  • Proto-Oncogene Proteins c-akt
  • p38 Mitogen-Activated Protein Kinases