The genetic basis of laboratory adaptation in Caulobacter crescentus
- PMID: 20472802
- PMCID: PMC2897358
- DOI: 10.1128/JB.00255-10
The genetic basis of laboratory adaptation in Caulobacter crescentus
Abstract
The dimorphic bacterium Caulobacter crescentus has evolved marked phenotypic changes during its 50-year history of culture in the laboratory environment, providing an excellent system for the study of natural selection and phenotypic microevolution in prokaryotes. Combining whole-genome sequencing with classical molecular genetic tools, we have comprehensively mapped a set of polymorphisms underlying multiple derived phenotypes, several of which arose independently in separate strain lineages. The genetic basis of phenotypic differences in growth rate, mucoidy, adhesion, sedimentation, phage susceptibility, and stationary-phase survival between C. crescentus strain CB15 and its derivative NA1000 is determined by coding, regulatory, and insertion/deletion polymorphisms at five chromosomal loci. This study evidences multiple genetic mechanisms of bacterial evolution as driven by selection for growth and survival in a new selective environment and identifies a common polymorphic locus, zwf, between lab-adapted C. crescentus and clinical isolates of Pseudomonas aeruginosa that have adapted to a human host during chronic infection.
Figures
Similar articles
-
Flagellar Structures from the Bacterium Caulobacter crescentus and Implications for Phage ϕ CbK Predation of Multiflagellin Bacteria.J Bacteriol. 2021 Feb 8;203(5):e00399-20. doi: 10.1128/JB.00399-20. Print 2021 Feb 8. J Bacteriol. 2021. PMID: 33288623 Free PMC article.
-
Quantitative Selection Analysis of Bacteriophage φCbK Susceptibility in Caulobacter crescentus.J Mol Biol. 2016 Jan 29;428(2 Pt B):419-30. doi: 10.1016/j.jmb.2015.11.018. Epub 2015 Nov 22. J Mol Biol. 2016. PMID: 26593064
-
CspC and CspD are essential for Caulobacter crescentus stationary phase survival.Arch Microbiol. 2010 Sep;192(9):747-58. doi: 10.1007/s00203-010-0602-8. Epub 2010 Jul 6. Arch Microbiol. 2010. PMID: 20607520
-
Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus.Bioessays. 2006 Apr;28(4):355-61. doi: 10.1002/bies.20384. Bioessays. 2006. PMID: 16547950 Review.
-
RNA-controlled regulation in Caulobacter crescentus.Curr Opin Microbiol. 2021 Apr;60:1-7. doi: 10.1016/j.mib.2021.01.002. Epub 2021 Jan 30. Curr Opin Microbiol. 2021. PMID: 33529919 Review.
Cited by
-
Topological control of the Caulobacter cell cycle circuitry by a polarized single-domain PAS protein.Nat Commun. 2015 May 8;6:7005. doi: 10.1038/ncomms8005. Nat Commun. 2015. PMID: 25952018 Free PMC article.
-
The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus.J Bacteriol. 2021 Aug 9;203(17):e0019921. doi: 10.1128/JB.00199-21. Epub 2021 Aug 9. J Bacteriol. 2021. PMID: 34124942 Free PMC article.
-
Genome-scale fitness profile of Caulobacter crescentus grown in natural freshwater.ISME J. 2019 Feb;13(2):523-536. doi: 10.1038/s41396-018-0295-6. Epub 2018 Oct 8. ISME J. 2019. PMID: 30297849 Free PMC article.
-
Genome sequence and phenotypic characterization of Caulobacter segnis.Curr Microbiol. 2015 Mar;70(3):355-63. doi: 10.1007/s00284-014-0726-1. Epub 2014 Nov 15. Curr Microbiol. 2015. PMID: 25398322
-
Programmable, Pneumatically Actuated Microfluidic Device with an Integrated Nanochannel Array To Track Development of Individual Bacteria.Anal Chem. 2016 Sep 6;88(17):8476-83. doi: 10.1021/acs.analchem.6b00889. Epub 2016 Jul 5. Anal Chem. 2016. PMID: 27314919 Free PMC article.
References
-
- Artamonova, V. S., and A. A. Makhrov. 2006. Unintentional genetic processes in artificially maintained populations: proving the leading role of selection in evolution. Russ. J. Genet. 42:234-246. - PubMed
-
- Barrick, J. E., D. S. Yu, S. H. Yoon, H. Jeong, T. K. Oh, D. Schneider, R. E. Lenski, and J. F. Kim. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243-1247. - PubMed
-
- Boras, J. A., M. M. Sala, E. Vazquez-Dominguez, M. G. Weinbauer, and D. Vaque. 2009. Annual changes of bacterial mortality due to viruses and protists in an oligotrophic coastal environment (NW Mediterranean). Environ. Microbiol. 11:1181-1193. - PubMed
-
- Buckling, A., R. C. Maclean, M. A. Brockhurst, and N. Colegrave. 2009. The beagle in a bottle. Nature 457:824-829. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
