Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 19;7:20.
doi: 10.1186/1550-2783-7-20.

Effect of Beta-Alanine Supplementation on the Onset of Blood Lactate Accumulation (OBLA) During Treadmill Running: Pre/post 2 Treatment Experimental Design

Affiliations
Free PMC article

Effect of Beta-Alanine Supplementation on the Onset of Blood Lactate Accumulation (OBLA) During Treadmill Running: Pre/post 2 Treatment Experimental Design

Thomas Jordan et al. J Int Soc Sports Nutr. .
Free PMC article

Abstract

Background: beta-Alanine (betaA) has been shown to improve performance during cycling. This study was the first to examine the effects of betaA supplementation on the onset of blood lactate accumulation (OBLA) during incremental treadmill running.

Methods: Seventeen recreationally-active men (mean +/- SE 24.9 +/- 4.7 yrs, 180.6 +/- 8.9 cm, 79.25 +/- 9.0 kg) participated in this randomized, double-blind, placebo-controlled pre/post test 2-treatment experimental design. Subjects participated in two incremental treadmill tests before and after 28 days of supplementation with either betaA (6.0 g.d-1)(betaA, n = 8) or an equivalent dose of Maltodextrin as the Placebo (PL, n = 9). Heart rate, percent heart rate maximum (%HRmax), %VO2max@OBLA (4.0 mmol.L-1 blood lactate concentration) and VO2max (L.min-1) were determined for each treadmill test. Friedman test was used to determine within group differences; and Mann-Whitney was used to determine between group differences for pre and post values (p < 0.05).

Results: The betaA group experienced a significant rightward shift in HR@OBLA beats.min-1 (p < 0.01) pre/post (161.6 +/- 19.2 to 173.6 +/- 9.9) but remained unchanged in the PL group (166.8 +/- 15.8 to 169.6 +/- 16.1). The %HRmax@OBLA increased (p < 0.05) pre/post in the betaA group (83.0% +/- 9.7 to 88.6% +/- 3.7) versus no change in the PL group (86.3 +/- % 4.8 to 87.9% +/- 7.2). The %VO2max@OBLA increased (p < 0.05) in the betaA group pre/post (69.1 +/- 11.0 to 75.6 +/- 10.7) but remained unchanged in the PL group (73.3 +/- 7.3 to 74.3 +/- 7.3). VO2max (L.min-1) decreased (p < 0.01) in the betaA group pre/post (4.57 +/- 0.8 to 4.31 +/- 0.8) versus no change in the PL group (4.04 +/- 0.7 to 4.18 +/- 0.8). Body mass kg increased (p < 0.05) in the betaA group pre/post (77.9 +/- 9.0 to 78.3 +/- 9.3) while the PL group was unchanged (80.6 +/- 9.1 to 80.4 +/- 9.0).

Conclusions: betaA supplementation for 28 days enhanced sub-maximal endurance performance by delaying OBLA. However, betaA supplemented individuals had a reduced aerobic capacity as evidenced by the decrease in VO2max values post supplementation.

Similar articles

See all similar articles

Cited by 12 articles

See all "Cited by" articles

References

    1. Stout JR, Cramer JT, Mielke M, O'Kroy J, Torok D, Zoeller RF. Effects of 28 days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J Strength Cond Res. 2006;20(4):928–31. doi: 10.1519/R-19655.1. - DOI - PubMed
    1. Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC. Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. 2007;32(3):381–6. doi: 10.1007/s00726-006-0474-z. - DOI - PubMed
    1. Stout JR, Graves BS, Smith AE, Hartman MJ, Cramer JT, Beck TW, Harris RC. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55-92 Years): a double-blind randomized study. J Int Soc Sports Nutr. 2008;5:21. doi: 10.1186/1550-2783-5-21. - DOI - PMC - PubMed
    1. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of b-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32:225–233. doi: 10.1007/s00726-006-0364-4. - DOI - PubMed
    1. Zoeller RF, Stout JR, O'Kroy JO, TOrok D, Mielke M. Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids. 2007;33(3):505–10. doi: 10.1007/s00726-006-0399-6. - DOI - PubMed

LinkOut - more resources

Feedback