Uncertainty of feedback and state estimation determines the speed of motor adaptation
- PMID: 20485466
- PMCID: PMC2871692
- DOI: 10.3389/fncom.2010.00011
Uncertainty of feedback and state estimation determines the speed of motor adaptation
Abstract
Humans can adapt their motor behaviors to deal with ongoing changes. To achieve this, the nervous system needs to estimate central variables for our movement based on past knowledge and new feedback, both of which are uncertain. In the Bayesian framework, rates of adaptation characterize how noisy feedback is in comparison to the uncertainty of the state estimate. The predictions of Bayesian models are intuitive: the nervous system should adapt slower when sensory feedback is more noisy and faster when its state estimate is more uncertain. Here we want to quantitatively understand how uncertainty in these two factors affects motor adaptation. In a hand reaching experiment we measured trial-by-trial adaptation to a randomly changing visual perturbation to characterize the way the nervous system handles uncertainty in state estimation and feedback. We found both qualitative predictions of Bayesian models confirmed. Our study provides evidence that the nervous system represents and uses uncertainty in state estimate and feedback during motor adaptation.
Keywords: Bayesian statistics; motor adaptation; motor learning; uncertainty.
Figures
Similar articles
-
Variance in exposed perturbations impairs retention of visuomotor adaptation.J Neurophysiol. 2017 Nov 1;118(5):2745-2754. doi: 10.1152/jn.00416.2017. Epub 2017 Aug 16. J Neurophysiol. 2017. PMID: 28814633 Free PMC article.
-
Foot placement relies on state estimation during visually guided walking.J Neurophysiol. 2017 Feb 1;117(2):480-491. doi: 10.1152/jn.00015.2016. Epub 2016 Oct 19. J Neurophysiol. 2017. PMID: 27760813 Free PMC article.
-
Effect of visuomotor-map uncertainty on visuomotor adaptation.J Neurophysiol. 2012 Mar;107(6):1576-85. doi: 10.1152/jn.00204.2011. Epub 2011 Dec 21. J Neurophysiol. 2012. PMID: 22190631
-
Probabilistic mechanisms in sensorimotor control.Novartis Found Symp. 2006;270:191-8; discussion 198-202, 232-7. Novartis Found Symp. 2006. PMID: 16649715 Review.
-
Probabilistic models in human sensorimotor control.Hum Mov Sci. 2007 Aug;26(4):511-24. doi: 10.1016/j.humov.2007.05.005. Epub 2007 Jul 12. Hum Mov Sci. 2007. PMID: 17628731 Free PMC article. Review.
Cited by
-
Human representation of visuo-motor uncertainty as mixtures of orthogonal basis distributions.Nat Neurosci. 2015 Aug;18(8):1152-8. doi: 10.1038/nn.4055. Epub 2015 Jun 29. Nat Neurosci. 2015. PMID: 26120962 Free PMC article.
-
Learning vs. minding: How subjective costs can mask motor learning.PLoS One. 2023 Mar 16;18(3):e0282693. doi: 10.1371/journal.pone.0282693. eCollection 2023. PLoS One. 2023. PMID: 36928111 Free PMC article.
-
Kalman filtering naturally accounts for visually guided and predictive smooth pursuit dynamics.J Neurosci. 2013 Oct 30;33(44):17301-13. doi: 10.1523/JNEUROSCI.2321-13.2013. J Neurosci. 2013. PMID: 24174663 Free PMC article.
-
Modeling Expected Reaching Error and Behaviors for Motor Adaptation.Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1534-1538. doi: 10.1109/EMBC.2019.8857562. Annu Int Conf IEEE Eng Med Biol Soc. 2019. PMID: 31946186 Free PMC article.
-
Decreased Temporal Sensorimotor Adaptation Due to Perturbation-Induced Measurement Noise.Front Hum Neurosci. 2019 Feb 14;13:46. doi: 10.3389/fnhum.2019.00046. eCollection 2019. Front Hum Neurosci. 2019. PMID: 30837854 Free PMC article.
References
-
- Alais D., Burr D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 14, 257–262 - PubMed
-
- Burgar C., Lum P., Shor P., Van der Loos H. (2000). Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 376, 663–673 - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
