Production and identification of wheat-Agropyron cristatum 6P translocation lines

Planta. 2010 Jul;232(2):501-10. doi: 10.1007/s00425-010-1187-9. Epub 2010 May 19.

Abstract

The narrow genetic background of wheat is the primary factor that has restricted the improvement of crop yield in recent years. The kernel number per spike is the most important factor of the many potential characteristics that determine wheat yield. Agropyron cristatum (L.) Gaertn., a wild relative of wheat, has the characteristics of superior numbers of florets and kernels per spike, which are controlled by chromosome 6P. In this study, the wheat-A. cristatum disomic addition and substitution lines were used as bridge materials to produce wheat-A. cristatum 6P translocation lines induced by gametocidal chromosomes and irradiation. The results of genomic in situ hybridization showed that the frequency of translocation induced by gametocidal chromosomes was 5.08%, which was higher than the frequency of irradiated hybrids (2.78%) and irradiated pollen (2.12%). The fluorescence in situ hybridization results of the translocation lines showed that A. cristatum chromosome 6P could be translocated to wheat ABD genome, and the recombination frequency was A genome > B genome > D genome. The alien A. cristatum chromosome 6P was translocated to wheat homoeologous groups 1, 2, 3, 5 and 6. We obtained abundant translocation lines that possessed whole-arm, terminal, segmental and intercalary translocations. Three 6PS-specific and four 6PL-specific markers will be useful to rapidly identify and trace the translocated fragments. The different wheat-A. cristatum 6P translocation lines obtained in this study can provide basic materials for analyzing the alien genes carried by chromosome 6P. The translocation line WAT33-1-3 and introgression lines WAI37-2 and WAI41-1, which had significant characteristics of multikernel (high numbers of kernels per spike), could be utilized as novel germplasms for high-yield wheat breeding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agropyron / genetics*
  • Chromosomes, Plant / genetics
  • Hybridization, Genetic / genetics
  • In Situ Hybridization, Fluorescence
  • Translocation, Genetic / genetics
  • Triticum / genetics*