Osteopetrosis (OPT) refers to the consequences of generalized failure of skeletal resorption during growth. Most cases are explained by loss-of-function mutation within the genes that encode either chloride channel 7 (CLCN7) or a vacuolar proton pump subunit (TCIRG1), each compromising acid secretion by osteoclasts. Patients suffer fractures and sometimes cranial nerve entrapment and insufficient medullary space for hematopoiesis. In 1996, we reported that a high serum level of the brain isoenzyme of creatine kinase (BB-CK), the CK of osteoclasts, characterizes OPT dueamong the sclerosing bone disorders (J Clin Endocrinol Metab. 1996;11:1438). Now, we show that elevation in serum of multiple lactate dehydrogenase (LDH) isoenzymes with aspartate transaminase (AST) distinguishes autosomal dominant OPT due to loss-of-function mutation in CLCN7 [Albers-Schönberg disease (A-SD)] among these conditions. Serum total LDH and AST levels as high as 3× and 2×, respectively, the upper limits of normal for age-appropriate controls, were persistent and essentially concordant in A-SD. Serum LDH was elevated in 7 of 9 children and in the 2 adults studied with A-SD. LDH isoenzyme quantitation showed excesses of LDH-2, -3, and -4. Neither total LDH nor AST increases were found in other forms of OPT, including bisphosphonate-induced OPT, or in 41 children and 6 adults representing 20 additional sclerosing bone disorders. Serum TRACP-5b and BB-CK also were markedly elevated in A-SD. Hence, high serum levels of several enzymes characterize A-SD. Elevated serum LDH isoenzymes and AST indicate a disturbance (of uncertain clinical significance) within multiple extraosseous tissues when there is CLCN7 deficiency.
© 2010 American Society for Bone and Mineral Research.