The complete plastid genomes of the two 'dinotoms' Durinskia baltica and Kryptoperidinium foliaceum
- PMID: 20502706
- PMCID: PMC2873285
- DOI: 10.1371/journal.pone.0010711
The complete plastid genomes of the two 'dinotoms' Durinskia baltica and Kryptoperidinium foliaceum
Abstract
Background: In one small group of dinoflagellates, photosynthesis is carried out by a tertiary endosymbiont derived from a diatom, giving rise to a complex cell that we collectively refer to as a 'dinotom'. The endosymbiont is separated from its host by a single membrane and retains plastids, mitochondria, a large nucleus, and many other eukaryotic organelles and structures, a level of complexity suggesting an early stage of integration. Although the evolution of these endosymbionts has attracted considerable interest, the plastid genome has not been examined in detail, and indeed no tertiary plastid genome has yet been sequenced.
Methodology/principal findings: Here we describe the complete plastid genomes of two closely related dinotoms, Durinskia baltica and Kryptoperidinium foliaceum. The D. baltica (116470 bp) and K. foliaceum (140426 bp) plastid genomes map as circular molecules featuring two large inverted repeats that separate distinct single copy regions. The organization and gene content of the D. baltica plastid closely resemble those of the pennate diatom Phaeodactylum tricornutum. The K. foliaceum plastid genome is much larger, has undergone more reorganization, and encodes a putative tyrosine recombinase (tyrC) also found in the plastid genome of the heterokont Heterosigma akashiwo, and two putative serine recombinases (serC1 and serC2) homologous to recombinases encoded by plasmids pCf1 and pCf2 in another pennate diatom, Cylindrotheca fusiformis. The K. foliaceum plastid genome also contains an additional copy of serC1, two degenerate copies of another plasmid-encoded ORF, and two non-coding regions whose sequences closely resemble portions of the pCf1 and pCf2 plasmids.
Conclusions/significance: These results suggest that while the plastid genomes of two dinotoms share very similar gene content and genome organization with that of the free-living pennate diatom P. tricornutum, the K. folicaeum plastid genome has absorbed two exogenous plasmids. Whether this took place before or after the tertiary endosymbiosis is not clear.
Conflict of interest statement
Figures
Similar articles
-
Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts.PLoS One. 2012;7(8):e43763. doi: 10.1371/journal.pone.0043763. Epub 2012 Aug 20. PLoS One. 2012. PMID: 22916303 Free PMC article.
-
HSP90, tubulin and actin are retained in the tertiary endosymbiont genome of Kryptoperidinium foliaceum.J Eukaryot Microbiol. 2004 Nov-Dec;51(6):651-9. doi: 10.1111/j.1550-7408.2004.tb00604.x. J Eukaryot Microbiol. 2004. PMID: 15666722
-
The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages.BMC Evol Biol. 2007 Sep 24;7:172. doi: 10.1186/1471-2148-7-172. BMC Evol Biol. 2007. PMID: 17892581 Free PMC article.
-
Integration of plastids with their hosts: Lessons learned from dinoflagellates.Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10247-54. doi: 10.1073/pnas.1421380112. Epub 2015 May 20. Proc Natl Acad Sci U S A. 2015. PMID: 25995366 Free PMC article. Review.
-
The endosymbiotic origin, diversification and fate of plastids.Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48. doi: 10.1098/rstb.2009.0103. Philos Trans R Soc Lond B Biol Sci. 2010. PMID: 20124341 Free PMC article. Review.
Cited by
-
Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae.Plant Mol Biol. 2012 Jul;79(4-5):347-57. doi: 10.1007/s11103-012-9916-z. Epub 2012 May 5. Plant Mol Biol. 2012. PMID: 22562591
-
Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation.BMC Evol Biol. 2019 Jan 11;19(1):20. doi: 10.1186/s12862-018-1316-9. BMC Evol Biol. 2019. PMID: 30634905 Free PMC article.
-
Chloroplast division checkpoint in eukaryotic algae.Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7629-E7638. doi: 10.1073/pnas.1612872113. Epub 2016 Nov 11. Proc Natl Acad Sci U S A. 2016. PMID: 27837024 Free PMC article.
-
Simonsenia aveniformis sp. nov. (Bacillariophyceae), molecular phylogeny and systematics of the genus, and a new type of canal raphe system.Sci Rep. 2015 Nov 24;5:17115. doi: 10.1038/srep17115. Sci Rep. 2015. PMID: 26596906 Free PMC article.
-
Diversity and Divergence of Dinoflagellate Histone Proteins.G3 (Bethesda). 2015 Dec 8;6(2):397-422. doi: 10.1534/g3.115.023275. G3 (Bethesda). 2015. PMID: 26646152 Free PMC article.
References
-
- McFadden GI. Primary and secondary endosymbiosis and the origin of plastids. Journal of Phycology. 2001;37:951–959.
-
- Archibald JM, Keeling PJ. Recycled plastids: A ‘green movement’ in eukaryotic evolution. Trends in Genetics. 2002;18:577–584. - PubMed
-
- Palmer JD. The symbiotic birth and spread of plastids: How many times and whodunit? Journal of Phycology. 2003;39:4–11.
-
- Bhattacharya D, Yoon HS, Hackett JD. Photosynthetic eukaryotes unite: Endosymbiosis connects the dots. Bioessays. 2004;26:50–60. - PubMed
-
- Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:7678–7683. - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
