Regulation of leucoplast morphology in roots: interorganellar signaling from mitochondria?

Plant Signal Behav. 2010 Jul;5(7):856-9. doi: 10.4161/psb.5.7.11893. Epub 2010 Jul 1.

Abstract

The appearance of leaf mesophyll chloroplasts in angiosperms is characterized by their uniform and static shape, which is molded by symmetric division of the preexisting organelles, involving three prokaryote-derived proteins: the division executor protein, FtsZ, and the division site positioning proteins, MinD and MinE. On the other hand, noncolored plastids in roots, where the involvement of the known chloroplast division factors in plastid morphogenesis is yet unclear, are morphologically heterogeneous and transform dynamically. This is further emphasized by the active formation of long tubular protrusions called stromules from the main body of those plastids. Molecular regulation and physiological significance of such dynamic morphology of root plastids also remain unknown. In this context, we have recently demonstrated that the mitochondrial respiratory inhibitor antimycin A induces rapid and reversible filamentation of root plastids (leucoplasts) in Arabidopsis thaliana. In contrast, the same treatment with antimycin A did not affect the morphology of amyloplasts in the columella cells at the root tip. The alternative oxidase inhibitor salicylhydroxamic acid suppresses the antimycin-induced plastid filamentation, perhaps implying an alternative oxidase-mediated interorganellar signaling between the mitochondria and the leucoplasts in the root cells. Our data may provide some clues as to how the formation of stromules is initiated.

Keywords: antimycin A; interorganellar crosstalk; plastid morphology; respiration; stress response; stromule.

Publication types

  • Comment