A novel L-ficolin/mannose-binding lectin chimeric molecule with enhanced activity against Ebola virus

J Biol Chem. 2010 Aug 6;285(32):24729-39. doi: 10.1074/jbc.M110.106260. Epub 2010 Jun 1.

Abstract

Ebola viruses constitute a newly emerging public threat because they cause rapidly fatal hemorrhagic fevers for which no treatment exists, and they can be manipulated as bioweapons. We targeted conserved N-glycosylated carbohydrate ligands on viral envelope surfaces using novel immune therapies. Mannose-binding lectin (MBL) and L-ficolin (L-FCN) were selected because they function as opsonins and activate complement. Given that MBL has a complex quaternary structure unsuitable for large scale cost-effective production, we sought to develop a less complex chimeric fusion protein with similar ligand recognition and enhanced effector functions. We tested recombinant human MBL and three L-FCN/MBL variants that contained the MBL carbohydrate recognition domain and varying lengths of the L-FCN collagenous domain. Non-reduced chimeric proteins formed predominantly nona- and dodecameric oligomers, whereas recombinant human MBL formed octadecameric and larger oligomers. Surface plasmon resonance revealed that L-FCN/MBL76 had the highest binding affinities for N-acetylglucosamine-bovine serum albumin and mannan. The same chimeric protein displayed superior complement C4 cleavage and binding to calreticulin (cC1qR), a putative receptor for MBL. L-FCN/MBL76 reduced infection by wild type Ebola virus Zaire significantly greater than the other molecules. Tapping mode atomic force microscopy revealed that L-FCN/MBL76 was significantly less tall than the other molecules despite similar polypeptide lengths. We propose that alterations in the quaternary structure of L-FCN/MBL76 resulted in greater flexibility in the collagenous or neck region. Similarly, a more pliable molecule might enhance cooperativity between the carbohydrate recognition domains and their cognate ligands, complement activation, and calreticulin binding dynamics. L-FCN/MBL chimeric proteins should be considered as potential novel therapeutics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antiviral Agents / pharmacology*
  • Calreticulin / chemistry
  • Cell Line, Tumor
  • Chemistry, Pharmaceutical / methods
  • Complement System Proteins / chemistry
  • Drug Design
  • Ebolavirus / metabolism*
  • Ficolins
  • Humans
  • Kinetics
  • Lectins / chemistry*
  • Mannose-Binding Lectin / chemistry*
  • Microscopy, Atomic Force / methods
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Proteins / chemistry
  • Surface Plasmon Resonance / methods

Substances

  • Antiviral Agents
  • Calreticulin
  • Lectins
  • Mannose-Binding Lectin
  • Recombinant Fusion Proteins
  • Recombinant Proteins
  • Complement System Proteins