Using 'omics' to define pathogenesis and biomarkers of Parkinson's disease

Expert Rev Neurother. 2010 Jun;10(6):925-42. doi: 10.1586/ern.10.54.

Abstract

Although great effort has been put forth to uncover the complex molecular mechanisms exploited in the pathogenesis of Parkinson's disease, a satisfactory explanation remains to be discovered. The emergence of several -omics techniques, transcriptomics, proteomics and metabolomics, have been integral in confirming previously identified pathways that are associated with dopaminergic neurodegeneration and subsequently Parkinson's disease, including mitochondrial and proteasomal function and synaptic neurotransmission. Additionally, these unbiased techniques, particularly in the brain regions uniquely associated with the disease, have greatly enhanced our ability to identify novel pathways, such as axon-guidance, that are potentially involved in Parkinson's pathogenesis. A comprehensive appraisal of the results obtained by different -omics has also reconfirmed the increase in oxidative stress as a common pathway likely to be critical in Parkinson's development/progression. It is hoped that further integration of these techniques will yield a more comprehensive understanding of Parkinson's disease etiology and the biological pathways that mediate neurodegeneration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biomarkers / metabolism*
  • Brain / metabolism*
  • Disease Progression
  • Humans
  • Metabolomics
  • Parkinson Disease / etiology*
  • Parkinson Disease / metabolism*
  • Proteomics

Substances

  • Biomarkers