Cyclic electron flow around photosystem I in unicellular green algae

Photosynth Res. 2010 Nov;106(1-2):47-56. doi: 10.1007/s11120-010-9566-4. Epub 2010 Jun 8.

Abstract

Cyclic electron flow around PSI, or cyclic photophosphorylation, is the photosynthetic process which recycles the reducing equivalents produced by photosystem I in the stroma towards the plastoquinone pool. Through the activity of cytochrome b(6)f, which also transfers protons across the membrane, it promotes the synthesis of ATP. The literature dealing with cyclic electron flow in unicellular algae is far less abundant than it is for plants. However, in the chloroplast of algae such as Chlorella or Chlamydomonas, an efficient carbohydrate catabolism renders the redox poise much more reducing than in plant chloroplasts. It is therefore worthwhile highlighting the specific properties of unicellular algae because cyclic electron flow is highly dependent upon the accumulation of these stromal reducing equivalents. Such an increase of reducing power in the stroma stimulates the reduction of plastoquinones, which is the limiting step of cyclic electron flow. In anaerobic conditions in the dark, this reaction can lead to a fully reduced plastoquinone pool and induce state transitions, the migration of 80% of light harvesting complexes II and 20% of cytochrome b(6)f complex from the PSII-enriched grana to the PSI-enriched lamella. These ultrastructural changes have been proposed to further enhance cyclic electron flow by increasing PSI antenna size, and forming PSI-cyt b(6)f supercomplexes. These hypotheses are discussed in light of recently published data.

MeSH terms

  • Cell Respiration
  • Chlorophyta / cytology*
  • Chlorophyta / enzymology
  • Chlorophyta / metabolism*
  • Electron Transport
  • Ferredoxins / metabolism
  • Kinetics
  • Oxidation-Reduction
  • Photosystem I Protein Complex / metabolism*
  • Spectrum Analysis

Substances

  • Ferredoxins
  • Photosystem I Protein Complex