Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;183(1):17-27.
doi: 10.1007/BF00185831.

The dynamic structure of rabbit blastocyst coverings. III. Transformation of coverings under non-physiological developmental conditions

Affiliations

The dynamic structure of rabbit blastocyst coverings. III. Transformation of coverings under non-physiological developmental conditions

B Fischer et al. Anat Embryol (Berl). 1991.

Abstract

Under physiological conditions the zona pellucida disappears in the rabbit between Day 3 and early Day 4 post coitum (p.c.) and is replaced by a new layer, the neozona. The dissolution of the zona pellucida and the formation of the neozona was investigated in three different experimental approaches, all of them characterized by non-physiological developmental conditions for the embryo: Prevention of embryo migration from the oviduct into the uterus by postcoital (48 h p.c.) tubal ligation, in vitro culture, and asynchronous embryo transfer into uteri of recipient rabbits. Embryos of age 2 1/2, 3, 4 and 4 1/2 days p.c. were cultured for 12 to 72 h. The media used for in vitro culture were supplemented with BSA, serum or with uterine secretions that were collected either synchronously or asynchronously to the developmental stage of the cultured embryos. Three-day-old embryos were transferred into uteri of pseudopregnant foster rabbits of either synchronous (Day 3) or asynchronous stages (Day 0, 2, 4, 5, 6) and were recovered 24 to 72 h after transfer. The transformation of the coverings was evaluated by light and transmission electron microscopy. The dissolution of the zona pellucida was greatly disturbed in tube-locked embryos, and in cultured embryos if standard protein supplements (BSA or serum) had been used for in vitro culture. In many cases the zona was still completely preserved after 2 or 3 days in culture, at a time when it normally would have already been replaced by the neozona in vivo. The dissolution in vitro, however, progressed incomparably better if the culture medium had been substituted with synchronous or asynchronous uterine secretions. The formation of the neozona could not be verified in cultured blastocysts. After embryo transfer, the dissolution of the zona pellucida was completed in most cases by 2 days after transfer, irrespective of the recipients' progestational stage. Present results indicate that uterine components are essential for the dissolution of the rabbit zona pellucida. These components appear to be present in the uterine cavity constitutively, i.e. independently of the uterine progestational transformation, and need not be in synchrony with the embryo's developmental stage for dissolution of the zona. Normal formation of the neozona does not take place under the non-physiological developmental conditions of in vitro culture.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Soc Exp Biol Med. 1970 Mar;133(3):921-5 - PubMed
    1. J Reprod Fertil. 1974 Mar;37(1):221-37 - PubMed
    1. Acta Anat (Basel). 1989;136(1):79-88 - PubMed
    1. Anat Embryol (Berl). 1979;157(1):15-34 - PubMed
    1. J Reprod Fertil. 1975 Sep;44(3):539-42 - PubMed

Publication types