Phosphorylation and Dephosphorylation Events Allow for Rapid Segregation of Fate Determinants During Drosophila Neuroblast Asymmetric Divisions

Commun Integr Biol. 2010 Jan;3(1):46-9. doi: 10.4161/cib.3.1.9635.

Abstract

Drosophila neuroblasts display remarkable asymmetry throughout mitosis. The most prominent asymmetry is the size difference between daughter cells at cytokinesis. The larger cell retains stem cell identity, i.e., remains a neuroblast while the smaller cell, called a ganglion mother cell (GMC), will generate differentiated neural and glial progeny. Preceding this size difference, several protein complexes localize to opposite sides of the neuroblast cortex (apical and basal in the embryo and, by analogy, referred to as such in larval neuroblasts although their asymmetry no longer correlates with such axis). The plane of division is coordinated with this molecular asymmetry such that apical and basal complexes are unequally partitioned between the two daughter cells: apical complexes are inherited by the self-renewing neuroblast while basal complexes are inherited by the GMC. This unequal segregation has been extensively shown to be functionally significant. Apical complexes contain factors required for cellular selfrenewal and basal complexes contain factors required for the differentiation of the GMC progeny. Curiously, however, some "basal" neuroblast proteins such as the scaffold protein Miranda (Mira) and its associated fate determinant Prospero (Pros), are initially apically localized prior to translocating to the opposite side of the cell cortex by the onset of mitosis. This is because mira mRNA is apically enriched, where it remains throughout the cell cycle, suggesting that Mira protein is translated within the apical environment.1,2 The transition from apical to basal enrichment of Mira and Pros takes place within minutes.2 Here, we summarize the known phosphorylation events and roles during neuroblast asymmetric divisions, as well as very recent work, including our own, identifying the first protein phosphatases implicated in this process. We then discuss models previously proposed, as well as a new model, for apical-to-basal transition of the Mira complex in light of our new results.

Keywords: Drosophila; Miranda; asymmetric cell division; neuroblast; phosphorylation; polarity.