Spatial organization of the flow of genetic information in bacteria
- PMID: 20562858
- PMCID: PMC2896451
- DOI: 10.1038/nature09152
Spatial organization of the flow of genetic information in bacteria
Abstract
Eukaryotic cells spatially organize mRNA processes such as translation and mRNA decay. Much less is clear in bacterial cells where the spatial distribution of mature mRNA remains ambiguous. Using a sensitive method based on quantitative fluorescence in situ hybridization, we show here that in Caulobacter crescentus and Escherichia coli, chromosomally expressed mRNAs largely display limited dispersion from their site of transcription during their lifetime. We estimate apparent diffusion coefficients at least two orders of magnitude lower than expected for freely diffusing mRNA, and provide evidence in C. crescentus that this mRNA localization restricts ribosomal mobility. Furthermore, C. crescentus RNase E appears associated with the DNA independently of its mRNA substrates. Collectively, our findings show that bacteria can spatially organize translation and, potentially, mRNA decay by using the chromosome layout as a template. This chromosome-centric organization has important implications for cellular physiology and for our understanding of gene expression in bacteria.
Figures
Comment in
-
Bacterial physiology: The master template.Nat Rev Microbiol. 2010 Aug;8(8):533. doi: 10.1038/nrmicro2411. Nat Rev Microbiol. 2010. PMID: 20665953 No abstract available.
Similar articles
-
Spatial organization and dynamics of RNase E and ribosomes in Caulobacter crescentus.Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):E3712-E3721. doi: 10.1073/pnas.1721648115. Epub 2018 Apr 2. Proc Natl Acad Sci U S A. 2018. PMID: 29610352 Free PMC article.
-
Methodology for Ribosome Profiling of Key Stages of the Caulobacter crescentus Cell Cycle.Methods Enzymol. 2018;612:443-465. doi: 10.1016/bs.mie.2018.07.008. Epub 2018 Aug 31. Methods Enzymol. 2018. PMID: 30502952 Free PMC article.
-
BR-Bodies Provide Selectively Permeable Condensates that Stimulate mRNA Decay and Prevent Release of Decay Intermediates.Mol Cell. 2020 May 21;78(4):670-682.e8. doi: 10.1016/j.molcel.2020.04.001. Epub 2020 Apr 27. Mol Cell. 2020. PMID: 32343944 Free PMC article.
-
Compartmentalization of RNA Degradosomes in Bacteria Controls Accessibility to Substrates and Ensures Concerted Degradation of mRNA to Nucleotides.Annu Rev Microbiol. 2022 Sep 8;76:533-552. doi: 10.1146/annurev-micro-041020-113308. Epub 2022 Jun 7. Annu Rev Microbiol. 2022. PMID: 35671533 Review.
-
Control of chromosome replication in caulobacter crescentus.Annu Rev Microbiol. 2002;56:625-56. doi: 10.1146/annurev.micro.56.012302.161103. Epub 2002 Jan 30. Annu Rev Microbiol. 2002. PMID: 12142494 Review.
Cited by
-
Co-transcriptional gene regulation in eukaryotes and prokaryotes.Nat Rev Mol Cell Biol. 2024 Mar 20. doi: 10.1038/s41580-024-00706-2. Online ahead of print. Nat Rev Mol Cell Biol. 2024. PMID: 38509203 Review.
-
MinD-RNase E interplay controls localization of polar mRNAs in E. coli.EMBO J. 2024 Feb;43(4):637-662. doi: 10.1038/s44318-023-00026-9. Epub 2024 Jan 19. EMBO J. 2024. PMID: 38243117 Free PMC article.
-
Growth-rate dependency of ribosome abundance and translation elongation rate in Corynebacterium glutamicum differs from that in Escherichia coli.Nat Commun. 2023 Sep 12;14(1):5611. doi: 10.1038/s41467-023-41176-y. Nat Commun. 2023. PMID: 37699882 Free PMC article.
-
Dynamics of chromosome organization in a minimal bacterial cell.Front Cell Dev Biol. 2023 Aug 9;11:1214962. doi: 10.3389/fcell.2023.1214962. eCollection 2023. Front Cell Dev Biol. 2023. PMID: 37621774 Free PMC article.
-
What remains from living cells in bacterial lysate-based cell-free systems.Comput Struct Biotechnol J. 2023 May 24;21:3173-3182. doi: 10.1016/j.csbj.2023.05.025. eCollection 2023. Comput Struct Biotechnol J. 2023. PMID: 37333859 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
