Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research

J Chem Inf Model. 2010 Jul 26;50(7):1189-204. doi: 10.1021/ci100176x.


Molecular modelers and cheminformaticians typically analyze experimental data generated by other scientists. Consequently, when it comes to data accuracy, cheminformaticians are always at the mercy of data providers who may inadvertently publish (partially) erroneous data. Thus, dataset curation is crucial for any cheminformatics analysis such as similarity searching, clustering, QSAR modeling, virtual screening, etc., especially nowadays when the availability of chemical datasets in public domain has skyrocketed in recent years. Despite the obvious importance of this preliminary step in the computational analysis of any dataset, there appears to be no commonly accepted guidance or set of procedures for chemical data curation. The main objective of this paper is to emphasize the need for a standardized chemical data curation strategy that should be followed at the onset of any molecular modeling investigation. Herein, we discuss several simple but important steps for cleaning chemical records in a database including the removal of a fraction of the data that cannot be appropriately handled by conventional cheminformatics techniques. Such steps include the removal of inorganic and organometallic compounds, counterions, salts and mixtures; structure validation; ring aromatization; normalization of specific chemotypes; curation of tautomeric forms; and the deletion of duplicates. To emphasize the importance of data curation as a mandatory step in data analysis, we discuss several case studies where chemical curation of the original “raw” database enabled the successful modeling study (specifically, QSAR analysis) or resulted in a significant improvement of model's prediction accuracy. We also demonstrate that in some cases rigorously developed QSAR models could be even used to correct erroneous biological data associated with chemical compounds. We believe that good practices for curation of chemical records outlined in this paper will be of value to all scientists working in the fields of molecular modeling, cheminformatics, and QSAR studies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Models, Chemical*
  • Molecular Structure
  • Organometallic Compounds / chemistry
  • Quantitative Structure-Activity Relationship*


  • Organometallic Compounds