Subcellular organelle lipidomics in TLR-4-activated macrophages
- PMID: 20574076
- PMCID: PMC2918461
- DOI: 10.1194/jlr.M008748
Subcellular organelle lipidomics in TLR-4-activated macrophages
Abstract
Lipids orchestrate biological processes by acting remotely as signaling molecules or locally as membrane components that modulate protein function. Detailed insight into lipid function requires knowledge of the subcellular localization of individual lipids. We report an analysis of the subcellular lipidome of the mammalian macrophage, a cell type that plays key roles in inflammation, immune responses, and phagocytosis. Nuclei, mitochondria, endoplasmic reticulum (ER), plasmalemma, and cytoplasm were isolated from RAW 264.7 macrophages in basal and activated states. Subsequent lipidomic analyses of major membrane lipid categories identified 229 individual/isobaric species, including 163 glycerophospholipids, 48 sphingolipids, 13 sterols, and 5 prenols. Major subcellular compartments exhibited substantially divergent glycerophospholipid profiles. Activation of macrophages by the Toll-like receptor 4-specific lipopolysaccharide Kdo(2)-lipid A caused significant remodeling of the subcellular lipidome. Some changes in lipid composition occurred in all compartments (e.g., increases in the levels of ceramides and the cholesterol precursors desmosterol and lanosterol). Other changes were manifest in specific organelles. For example, oxidized sterols increased and unsaturated cardiolipins decreased in mitochondria, whereas unsaturated ether-linked phosphatidylethanolamines decreased in the ER. We speculate that these changes may reflect mitochondrial oxidative stress and the release of arachidonic acid from the ER in response to cell activation.
Figures
Similar articles
-
Dynamic Remodeling of Membranes and Their Lipids during Acute Hormone-Induced Steroidogenesis in MA-10 Mouse Leydig Tumor Cells.Int J Mol Sci. 2021 Mar 4;22(5):2554. doi: 10.3390/ijms22052554. Int J Mol Sci. 2021. PMID: 33806352 Free PMC article.
-
A mouse macrophage lipidome.J Biol Chem. 2010 Dec 17;285(51):39976-85. doi: 10.1074/jbc.M110.182915. Epub 2010 Oct 5. J Biol Chem. 2010. PMID: 20923771 Free PMC article.
-
The expanding organelle lipidomes: current knowledge and challenges.Cell Mol Life Sci. 2023 Aug 2;80(8):237. doi: 10.1007/s00018-023-04889-3. Cell Mol Life Sci. 2023. PMID: 37530856 Free PMC article. Review.
-
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane.J Cell Biol. 1999 Aug 23;146(4):741-54. doi: 10.1083/jcb.146.4.741. J Cell Biol. 1999. PMID: 10459010 Free PMC article.
-
Organellar lipidomics--background and perspectives.Curr Opin Cell Biol. 2013 Aug;25(4):406-13. doi: 10.1016/j.ceb.2013.03.005. Epub 2013 Apr 20. Curr Opin Cell Biol. 2013. PMID: 23608594 Review.
Cited by
-
Reconstitution of ORP-mediated lipid exchange process coupled to PI(4)P metabolism.bioRxiv [Preprint]. 2023 Aug 4:2023.08.04.551917. doi: 10.1101/2023.08.04.551917. bioRxiv. 2023. PMID: 37577629 Free PMC article. Updated. Preprint.
-
Spinal muscular atrophy-like phenotype in a mouse model of acid ceramidase deficiency.Commun Biol. 2023 May 25;6(1):560. doi: 10.1038/s42003-023-04932-w. Commun Biol. 2023. PMID: 37231125 Free PMC article.
-
Computational design and molecular dynamics simulations suggest the mode of substrate binding in ceramide synthases.Nat Commun. 2023 Apr 22;14(1):2330. doi: 10.1038/s41467-023-38047-x. Nat Commun. 2023. PMID: 37087500 Free PMC article.
-
A basic model for the association of ligands with membrane cholesterol: application to cytolysin binding.J Lipid Res. 2023 Apr;64(4):100344. doi: 10.1016/j.jlr.2023.100344. Epub 2023 Feb 13. J Lipid Res. 2023. PMID: 36791915 Free PMC article.
-
Zymosan-Induced Murine Peritonitis Is Associated with an Increased Sphingolipid Synthesis without Changing the Long to Very Long Chain Ceramide Ratio.Int J Mol Sci. 2023 Feb 1;24(3):2773. doi: 10.3390/ijms24032773. Int J Mol Sci. 2023. PMID: 36769096 Free PMC article.
References
-
- Wymann M. P., Schneiter R. 2008. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9: 162–176. - PubMed
-
- Hannun Y. A., Obeid L. M. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9: 139–150. - PubMed
-
- Nicholls D. G. 2006. The physiological regulation of uncoupling proteins. Biochim. Biophys. Acta. 1757: 459–466. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
