Mechanisms of pattern decorrelation by recurrent neuronal circuits
- PMID: 20581841
- DOI: 10.1038/nn.2591
Mechanisms of pattern decorrelation by recurrent neuronal circuits
Abstract
Decorrelation is a fundamental computation that optimizes the format of neuronal activity patterns. Channel decorrelation by adaptive mechanisms results in efficient coding, whereas pattern decorrelation facilitates the readout and storage of information. Mechanisms achieving pattern decorrelation, however, remain unclear. We developed a theoretical framework that relates high-dimensional pattern decorrelation to neuronal and circuit properties in a mathematically stringent fashion. For a generic class of random neuronal networks, we proved that pattern decorrelation emerges from neuronal nonlinearities and is amplified by recurrent connectivity. This mechanism does not require adaptation of the network, is enhanced by sparse connectivity, depends on the baseline membrane potential and is robust. Connectivity measurements and computational modeling suggest that this mechanism is involved in pattern decorrelation in the zebrafish olfactory bulb. These results reveal a generic relationship between the structure and function of neuronal circuits that is probably relevant for pattern processing in various brain areas.
Similar articles
-
Neuronal circuits and computations: pattern decorrelation in the olfactory bulb.FEBS Lett. 2014 Aug 1;588(15):2504-13. doi: 10.1016/j.febslet.2014.05.055. Epub 2014 Jun 6. FEBS Lett. 2014. PMID: 24911205 Review.
-
Pattern orthogonalization via channel decorrelation by adaptive networks.J Comput Neurosci. 2010 Feb;28(1):29-45. doi: 10.1007/s10827-009-0183-1. Epub 2009 Aug 28. J Comput Neurosci. 2010. PMID: 19714457
-
Neuronal computations in the olfactory system of zebrafish.Annu Rev Neurosci. 2013 Jul 8;36:383-402. doi: 10.1146/annurev-neuro-062111-150504. Epub 2013 May 29. Annu Rev Neurosci. 2013. PMID: 23725002 Review.
-
Processing of odor representations by neuronal circuits in the olfactory bulb.Ann N Y Acad Sci. 2009 Jul;1170:293-7. doi: 10.1111/j.1749-6632.2009.04010.x. Ann N Y Acad Sci. 2009. PMID: 19686150
-
Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.J Neurosci. 2020 Jul 29;40(31):5954-5969. doi: 10.1523/JNEUROSCI.0233-20.2020. Epub 2020 Jun 19. J Neurosci. 2020. PMID: 32561671 Free PMC article.
Cited by
-
The periglomerular cell of the olfactory bulb and its role in controlling mitral cell spiking: a computational model.PLoS One. 2013;8(2):e56148. doi: 10.1371/journal.pone.0056148. Epub 2013 Feb 6. PLoS One. 2013. PMID: 23405261 Free PMC article.
-
Mechanisms and benefits of granule cell latency coding in the mouse olfactory bulb.Front Neural Circuits. 2012 Jun 27;6:40. doi: 10.3389/fncir.2012.00040. eCollection 2012. Front Neural Circuits. 2012. PMID: 22754503 Free PMC article.
-
Cortical Feedback Decorrelates Olfactory Bulb Output in Awake Mice.Neuron. 2015 Jun 17;86(6):1461-77. doi: 10.1016/j.neuron.2015.05.023. Epub 2015 Jun 4. Neuron. 2015. PMID: 26051422 Free PMC article.
-
Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb.Neuron. 2016 Jul 20;91(2):384-96. doi: 10.1016/j.neuron.2016.06.004. Epub 2016 Jun 30. Neuron. 2016. PMID: 27373833 Free PMC article.
-
Nonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper.J Neurosci. 2012 Jul 18;32(29):10053-62. doi: 10.1523/JNEUROSCI.5911-11.2012. J Neurosci. 2012. PMID: 22815519 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
