Consistency of Random Survival Forests
- PMID: 20582150
- PMCID: PMC2889677
- DOI: 10.1016/j.spl.2010.02.020
Consistency of Random Survival Forests
Abstract
We prove uniform consistency of Random Survival Forests (RSF), a newly introduced forest ensemble learner for analysis of right-censored survival data. Consistency is proven under general splitting rules, bootstrapping, and random selection of variables-that is, under true implementation of the methodology. Under this setting we show that the forest ensemble survival function converges uniformly to the true population survival function. To prove this result we make one key assumption regarding the feature space: we assume that all variables are factors. Doing so ensures that the feature space has finite cardinality and enables us to exploit counting process theory and the uniform consistency of the Kaplan-Meier survival function.
Figures
Similar articles
-
A comparative study of forest methods for time-to-event data: variable selection and predictive performance.BMC Med Res Methodol. 2021 Sep 25;21(1):193. doi: 10.1186/s12874-021-01386-8. BMC Med Res Methodol. 2021. PMID: 34563138 Free PMC article.
-
Interval censored recursive forests.J Comput Graph Stat. 2022;31(2):390-402. doi: 10.1080/10618600.2021.1987253. Epub 2021 Nov 17. J Comput Graph Stat. 2022. PMID: 35685204 Free PMC article.
-
L₁ splitting rules in survival forests.Lifetime Data Anal. 2017 Oct;23(4):671-691. doi: 10.1007/s10985-016-9372-1. Epub 2016 Jul 5. Lifetime Data Anal. 2017. PMID: 27379423
-
Ensemble methods for survival function estimation with time-varying covariates.Stat Methods Med Res. 2022 Nov;31(11):2217-2236. doi: 10.1177/09622802221111549. Epub 2022 Jul 27. Stat Methods Med Res. 2022. PMID: 35895510 Review.
-
Random survival forest with space extensions for censored data.Artif Intell Med. 2017 Jun;79:52-61. doi: 10.1016/j.artmed.2017.06.005. Epub 2017 Jun 20. Artif Intell Med. 2017. PMID: 28641924
Cited by
-
Comparison of RNA-Seq and microarray in the prediction of protein expression and survival prediction.Front Genet. 2024 Feb 23;15:1342021. doi: 10.3389/fgene.2024.1342021. eCollection 2024. Front Genet. 2024. PMID: 38463169 Free PMC article.
-
A novel machine learning prediction model for metastasis in breast cancer.Cancer Rep (Hoboken). 2024 Mar;7(3):e2006. doi: 10.1002/cnr2.2006. Cancer Rep (Hoboken). 2024. PMID: 38425238 Free PMC article.
-
Identification of RRM2 as a key ferroptosis-related gene in sepsis.Inflamm Res. 2024 Mar;73(3):459-473. doi: 10.1007/s00011-023-01849-2. Epub 2024 Jan 29. Inflamm Res. 2024. PMID: 38286859
-
Peripheral blood lymphocytes predict clinical outcomes in hormone receptor-positive HER2-negative advanced breast cancer patients treated with CDK4/6 inhibitors.Ther Adv Med Oncol. 2023 Dec 20;15:17588359231204857. doi: 10.1177/17588359231204857. eCollection 2023. Ther Adv Med Oncol. 2023. PMID: 38130467 Free PMC article.
-
Identification of necroptosis-related features in diabetic nephropathy and analysis of their immune microenvironent and inflammatory response.Front Cell Dev Biol. 2023 Nov 7;11:1271145. doi: 10.3389/fcell.2023.1271145. eCollection 2023. Front Cell Dev Biol. 2023. PMID: 38020922 Free PMC article.
References
-
- Amit Y, Geman D. Shape quantization and recognition with randomized trees. Neural Computation. 1997;9:1545–1588.
-
- Andersen PK, Borgan O, Gill RD, Keiding N. Statistical Methods Based on Counting Processes. New York: Springer; 1993.
-
- Biau G, Devroye L, Lugosi G. Consistency of random forests and other classifiers. J. Machine Learning Research. 2008;9:2039–2057.
-
- Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Belmont, California: 1984.
-
- Breiman L. Bagging predictors. Machine Learning. 1996;26:123–140.
Grants and funding
LinkOut - more resources
Full Text Sources