Biomechanics of the toddler head during low-height falls: an anthropomorphic dummy analysis

J Neurosurg Pediatr. 2010 Jul;6(1):57-68. doi: 10.3171/2010.3.PEDS09357.

Abstract

Object: Falls are the most common environmental setting for closed head injuries in children between 2 and 4 years of age. The authors previously found that toddlers had fewer skull fractures and scalp/facial soft-tissue injuries, and more frequent altered mental status than infants for the same low-height falls (<or=3 ft).

Methods: To identify potential age-dependent mechanical load factors that may be responsible for these clinical findings, the authors created an instrumented dummy representing an 18-month-old child using published toddler anthropometry and mechanical properties of the skull and neck, and they measured peak angular acceleration during low-height falls (1, 2, and 3 ft) onto carpet pad and concrete. They compared these results from occiput-first impacts to previously obtained values measured in a 6-week-old infant dummy.

Results: Peak angular acceleration of the toddler dummy head was largest in the sagittal and horizontal directions and increased significantly (around 2-fold) with fall height between 1 and 2 ft. Impacts onto concrete produced larger peak angular accelerations and smaller impact durations than those onto carpet pad. When compared with previously measured infant drops, toddler head accelerations were more than double those of the infant from the same height onto the same surface, likely contributing to the higher incidence of loss of consciousness reported in toddlers. Furthermore, the toddler impact forces were larger than those in the infant, but because of the thicker toddler skull, the risk of skull fracture from low-height falls is likely lower in toddlers compared with infants.

Conclusions: If similar fracture limits and brain tissue injury thresholds between infants and toddlers are assumed, it is expected that for impact events, the toddler is likely less vulnerable to skull fracture but more vulnerable to neurological impairment compared with the infant.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acceleration
  • Accidental Falls*
  • Age Factors
  • Anthropometry*
  • Biomechanical Phenomena*
  • Head Injuries, Closed / physiopathology*
  • Humans
  • Infant
  • Models, Anatomic*
  • Neck / physiopathology*
  • Skull / physiopathology*
  • Skull Fractures / physiopathology*