Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation

Lab Chip. 2010 Aug 21;10(16):2062-70. doi: 10.1039/c004285d. Epub 2010 Jul 5.


Cell-encapsulated hydrogels with complex three-dimensional (3D) structures were fabricated from photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) using modified 'top-down' and 'bottoms-up' versions of a commercially available stereolithography apparatus (SLA). Swelling and mechanical properties were measured for PEGDA hydrogels with molecular weights (M(w)) ranging from 700 to 10 000 Daltons (Da). Long-term viability of encapsulated NIH/3T3 cells was quantitatively evaluated using an MTS assay and shown to improve over 14 days by increasing the M(w) of the hydrogels. Addition of adhesive RGDS peptide sequences resulted in increased cell viability, proliferation, and spreading compared to pristine PEG hydrogels of the same M(w). Spatial 3D layer-by-layer cell patterning was successfully demonstrated, and the feasibility of depositing multiple cell types and material compositions into distinct layers was established.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Analysis of Variance
  • Animals
  • Cell Culture Techniques / methods*
  • Cell Survival / physiology
  • Hydrogel, Polyethylene Glycol Dimethacrylate / chemistry*
  • Mice
  • Microscopy, Fluorescence
  • Molecular Weight
  • NIH 3T3 Cells
  • Oligopeptides / chemistry
  • Photochemistry / instrumentation
  • Photochemistry / methods*
  • Polyethylene Glycols / chemistry
  • Tissue Scaffolds


  • Oligopeptides
  • poly(ethylene glycol)diacrylate
  • Hydrogel, Polyethylene Glycol Dimethacrylate
  • Polyethylene Glycols
  • arginyl-glycyl-aspartyl-serine