Effects of extremely low frequency magnetic field on the parameters of oxidative stress in heart

J Physiol Pharmacol. 2010 Jun;61(3):333-8.


Increasing production of free radicals in organisms is one of the putative mechanisms by which a extremely low frequency magnetic field (ELF-MF) may affect biological systems. The present study was designated to assess if ELF-MF applied in the magnetotherapy, affects generation of reactive oxygen species (ROS) in heart tissue and antioxidant capacity of plasma according to its working time. The experiments were performed on 3 groups of animals: group I - control; group II - exposed to 40 Hz, 7 mT, 30 min/day for 14 days (this field is commonly applied in magnetotherapy); group III - exposed to 40 Hz, 7 mT, 60 min/day for 14 days. Control rats were housed in a separate room without exposure to ELF-MF. Immediately after the last exposure, blood was taken from the tail vein and hearts were removed under anesthesia. The effect of the exposure to ELF-MF on oxidative stress was assessed on the basis of the measurements of thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H(2)O(2)), total free sulphydryl groups (-SH groups) and reduced glutathione (GSH) concentrations in heart homogenates. The total antioxidant capacity of plasma was measured using ferric reducing ability method (FRAP). Exposure to ELF-MF (40 Hz, 7 mT, 30 min/day for 2 weeks) did not significantly alter tissue TBARS, H(2)O(2), total free -SH groups, reduced glutathione (GSH) and total antioxidant capacity of plasma. By contrast, ELF-MF with the same frequency and induction but used for 60 min/day for 14 days caused significant increase in TBARS and H(2)O(2) concentration (P<0.01) and decrease in the concentration of GSH (P<0.05) and total free -SH groups in heart homogenates. Moreover, exposure of rats to ELF-MF (40 Hz, 7 mT, 60 min/day for 2 weeks) resulted in the decrease of plasma antioxidant capacity. Our results indicate that effects of ELF-MF on ROS generation in the heart tissue and antioxidant capacity of plasma depend on its working time.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Electromagnetic Fields*
  • Glutathione / metabolism
  • Hydrogen Peroxide / metabolism
  • Magnetics*
  • Male
  • Myocardium / metabolism*
  • Oxidative Stress / physiology*
  • Rats
  • Rats, Wistar
  • Thiobarbituric Acid Reactive Substances / metabolism


  • Antioxidants
  • Thiobarbituric Acid Reactive Substances
  • Hydrogen Peroxide
  • Glutathione