Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;21(2):95-118.
doi: 10.1515/revneuro.2010.21.2.95.

A transient receptor potential channel regulates basal ganglia output

Affiliations
Review

A transient receptor potential channel regulates basal ganglia output

Fu-Ming Zhou. Rev Neurosci. 2010.

Abstract

The substantia nigra pars reticulata (SNr) is a key basal ganglia output nucleus critical for movement control. A hallmark of the SNr gamma-aminobutyric acid (GABA)-containing projection neurons is their depolarized membrane potential, accompanied by rapid spontaneous spikes. Parkinsonian movement disorders are often associated with abnormalities in SNr GABA neuron firing intensity and/or pattern. A fundamental question is the molecular identity of the ion channels that drive these neurons to a depolarized membrane potential. Recent data show that SNr GABA projection neurons selectively express type 3 canonical transient receptor potential (TRPC3) channels. Such channels are tonically active and mediate an inward, Na(+)-dependent current, leading to a substantial depolarization and ensuring appropriate firing intensity and pattern in SNr GABA projection neurons. Equally important, TRPC3 channels in SNr GABA neurons are up-regulated by dopamine (DA) released from neighboring nigral DA neuron dendrites. Co-activation of D1 and D5 DA receptors leads to a TRPC3 channel-mediated inward current and increased firing in SNr GABA neurons, whereas D1-like receptor blockade reduces SNr GABA neuron firing frequency and increases their firing irregularity. TRPC3 channels serve as the effector channels mediating an ultra-short SNc-->SNr DA pathway that regulates the firing intensity and pattern of the basal ganglia output neurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources