Efficient sensory coding implies that populations of neurons should represent information-rich aspects of a signal with little redundancy. Recent studies have shown that neural heterogeneity in higher brain areas enhances the efficiency of encoding by reducing redundancy across the population. Here, we study how neural heterogeneity in the early stages of sensory processing influences the efficiency of population codes. Through the analysis of in vivo recordings, we contrast the encoding of two types of communication signals of electric fishes in the most peripheral sensory area of the CNS, the electrosensory lateral line lobe (ELL). We show that communication signals used during courtship (big chirps) and during aggressive encounters (small chirps) are encoded by different populations of ELL pyramidal cells, namely I-cells and E-cells, respectively. Most importantly, we show that the encoding strategy differs for the two signals and we argue that these differences allow these cell types to encode specifically information-rich features of the signals. Small chirps are detected, and their timing is accurately signaled through stereotyped spike bursts, whereas the shape of big chirps is accurately represented by variable increases in firing rate. Furthermore, we show that the heterogeneity across I-cells enhances the efficiency of the population code and thus permits the accurate discrimination of different quality courtship signals. Our study shows the importance of neural heterogeneity early in a sensory system and that it initiates the sparsification of sensory representation thereby contributing to the efficiency of the neural code.