64Cu-1,4,7-Triazacyclononane-1,4-diacetate-8-aminooctanoic acid-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2

Review
In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004.
[updated ].

Excerpt

The amphibian bombesin (BBN or BN, a peptide of 14 amino acids) is an analog of human gastrin-releasing peptide (GRP, a peptide of 27 amino acids) that binds to GRP receptors (GRPR) with high affinity and specificity (1, 2). Both GRP and BBN share an amidated C-terminus sequence homology of seven amino acids, Trp-Ala-Val-Gly-His-Leu-Met-NH2. BBN-Like peptides have been shown to induce various biological responses in diverse tissues, including the central nervous system and the gastrointestinal system. They also act as potential growth factors for both normal and neoplastic tissues (3). Specific BBN receptors (BBN-R) have been identified on central nervous system and gastrointestinal tissues and on a number of tumor cell lines (4). The BBN-R superfamily includes at least four different subtypes, namely the GRPR subtype (BB2), the neuromedin B (NMB) receptor subtype (BB1), the BB3 subtype, and the BB4 subtype. The findings of GRPR overexpression in various human tumors, such as breast, prostate, lung, colon, ovarian, and pancreatic cancers, provide opportunities for tumor imaging by designing specific molecular imaging agents to target the GRPR (5, 6).

Prasanphanich et al. (7) used 1,4,7-triazacyclononane-1,4-diacetate (NO2A) as a bifunctional chelator for labeling 8-aminooctanoic acid-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2 (8-Aoc-BBN[7-14]NH2) with 64Cu. 64Cu-NO2A-8-Aoc-BBN[7-14]NH2 has been evaluated as a positron emission tomography (PET) imaging agent of GRPR in nude mice bearing T-47D human breast cancer cells.

Publication types

  • Review