The fabrication of nanocomposite thin films with TiO2 nanoparticles by the layer-by-layer deposition method for multifunctional cotton fabrics

Nanotechnology. 2010 Aug 13;21(32):325603. doi: 10.1088/0957-4484/21/32/325603. Epub 2010 Jul 21.

Abstract

A multilayer nanocomposite film composed of anatase TiO(2) nanoparticles was fabricated on cationically modified woven cotton fabrics by the layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pre-treated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by a pad-batch method. Attenuated total reflectance Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to verify the presence of deposited nanolayers. Photocatalytic activities of the nanocomposite films were evaluated through the degradation of red wine pollutant. Nano-TiO(2) deposition enhanced the protection of cotton fabrics against UV radiation in comparison with the untreated cotton fabrics. Air permeability and whiteness value analysis was performed on the fabrics before and after the treatment with TiO(2) nanoparticles by the layer-by-layer deposition method. Tensile strength tests of the warp and weft yarns were performed to evaluate the effect of solution pH value changes during the alternate dipping procedures. For the first time the durability of the effect of the self-assembled multilayer films on the cotton fabric functional properties was analyzed after 10 and 20 washing cycles at 40 degrees C for 30 min.

Publication types

  • Research Support, Non-U.S. Gov't