Several members of a new family of non-sugar-type alpha-glucosidase inhibitors, bearing a phthalimide moiety connected to a variously substituted phenoxy ring by an alkyl chain, were synthesized and their activities were investigated. The efficacy of the inhibition activity appeared to be governed by the chain length of the substrate. Substrates possessing 10 carbons afforded the highest levels of activity, which were one to two orders of magnitude more potent than the known inhibitor 1-deoxynojirimycin (dNM). Furthermore, structure-activity relationship studies indicated a critical role of electron-withdrawing substituents at the phenoxy group for the activity. Derivatives bearing a chlorine atom along with a strong electron-withdrawing group, such as a nitro group, were the most potent of the series.
Copyright 2010 Elsevier Ltd. All rights reserved.