Osteolytic bone diseases such as osteoporosis have a common pathological feature in which osteoclastic bone resorption outstrips bone synthesis. Osteoclast formation and activation are regulated by receptor activator of nuclear factor κB ligand (RANKL). The induction of RANKL-signaling pathways occurs following the interaction of RANKL to its cognate receptor, RANK. This specific binding drives the activation of downstream signaling pathways; which ultimately induce the formation and activation of osteoclasts. In this study, we showed that a natural immunomodulator, mangiferin, inhibits osteoclast formation and bone resorption by attenuating RANKL-induced signaling. Mangiferin diminished the expression of osteoclast marker genes, including cathepsin K, calcitonin receptor, DC-STAMP, and V-ATPase d2. Mechanistic studies revealed that mangiferin inhibits RANKL-induced activation of NF-κB, concomitant with the inhibition of IκB-α degradation, and p65 nuclear translocation. In addition, mangiferin also exhibited an inhibitory effect on RANKL-induced ERK phosphorylation. Collectively, our data demonstrates that mangiferin exhibits anti-resorptive properties, suggesting the potential application of mangiferin for the treatment and prevention of bone diseases involving excessive osteoclastic bone resorption.