Eye development

Curr Top Dev Biol. 2010;90:343-86. doi: 10.1016/S0070-2153(10)90010-0.

Abstract

The vertebrate eye comprises tissues from different embryonic origins: the lens and the cornea are derived from the surface ectoderm, but the retina and the epithelial layers of the iris and ciliary body are from the anterior neural plate. The timely action of transcription factors and inductive signals ensure the correct development of the different eye components. Establishing the genetic basis of eye defects in zebrafishes, mouse, and human has been an important tool for the detailed analysis of this complex process. A single eye field forms centrally within the anterior neural plate during gastrulation; it is characterized on the molecular level by the expression of "eye-field transcription factors." The single eye field is separated into two, forming the optic vesicle and later (under influence of the lens placode) the optic cup. The lens develops from the lens placode (surface ectoderm) under influence of the underlying optic vesicle. Pax6 acts in this phase as master control gene, and genes encoding cytoskeletal proteins, structural proteins, or membrane proteins become activated. The cornea forms from the surface ectoderm, and cells from the periocular mesenchyme migrate into the cornea giving rise for the future cornea stroma. Similarly, the iris and ciliary body form from the optic cup. The outer layer of the optic cup becomes the retinal pigmented epithelium, and the main part of the inner layer of the optic cup forms later the neural retina with six different types of cells including the photoreceptors. The retinal ganglion cells grow toward the optic stalk forming the optic nerve. This review describes the major molecular players and cellular processes during eye development as they are known from frogs, zebrafish, chick, and mice-showing also differences among species and missing links for future research. The relevance to human disorders is one of the major aspects covered throughout the review.

MeSH terms

  • Animals
  • Bone Morphogenetic Proteins / genetics
  • Bone Morphogenetic Proteins / metabolism
  • Eye / anatomy & histology
  • Eye / embryology*
  • Eye / growth & development
  • Gene Expression Regulation, Developmental
  • Homeodomain Proteins / genetics
  • Homeodomain Proteins / metabolism
  • Humans
  • Morphogenesis*
  • Mutation
  • Signal Transduction
  • Transcription Factors / genetics
  • Transcription Factors / metabolism
  • Visual Fields
  • Wnt Proteins / genetics
  • Wnt Proteins / metabolism

Substances

  • Bone Morphogenetic Proteins
  • Homeodomain Proteins
  • Transcription Factors
  • Wnt Proteins